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Abstract

In 1914 S. Ramanujan recorded a list of 17 series for 1/π. We
survey the methods of proofs of Ramanujan’s formulae and indicate
recently discovered generalisations, some of which are not yet proven.

Let us start with two significant events of the 20th century, in the op-
posite historical order. At first glance, the stories might be thought of a
different nature.

In 1978, R. Apéry showed the irrationality of ζ(3) (see [4] and [13]).
His rational approximations to the number in question (known nowadays
as the Apéry constant) have the form vn/un ∈ Q for n = 0, 1, 2, . . . , where
the denominators {un} = {un}n=0,1,... and numerators {vn} = {vn}n=0,1,...

satisfy the same polynomial recurrence

(n + 1)3un+1 − (2n + 1)(17n2 + 17n + 5)un + n3un−1 = 0 (1)

with the initial data

u0 = 1, u1 = 5, v0 = 0, v1 = 6. (2)

Then
lim

n→∞
vn

un

= ζ(3) (3)
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and, surprisingly, the denominators {un} are integers:

un =
n∑

k=0

(
n

k

)2(
n + k

k

)2

∈ Z, n = 0, 1, 2, . . . , (4)

while the numerators {vn} are ‘close’ to being integer.
In 1914, S. Ramanujan [14] recorded a list of 17 series for 1/π, from

which we exclude the simplest one

∞∑
n=0

(1
2
)3
n

n!3
(4n + 1) · (−1)n =

2

π
(5)

and also two quite impressive examples

∞∑
n=0

(1
4
)n(1

2
)n(3

4
)n

n!3
(21460n + 1123) · (−1)n

8822n+1
=

4

π
, (6)

∞∑
n=0

(1
4
)n(1

2
)n(3

4
)n

n!3
(26390n + 1103) · 1

994n+2
=

1

2π
√

2
(7)

allowing to produce fast approaching (rational) approximations to π. Here

(a)n =
Γ(a + n)

Γ(a)
=

{
a(a + 1) · · · (a + n− 1) for n ≥ 1,

1 for n = 0,

denotes the Pochhammer symbol (the shifted factorial). The Pochhammer
products occuring in all formulae of this type may be written by means of
the binomial coefficients:

(1
2
)3
n

n!3
= 2−6n

(
2n

n

)3

,
(1

3
)n(1

2
)n(2

3
)n

n!3
= 2−2n3−3n

(
2n

n

)
(3n)!

n!3
,

(1
4
)n(1

2
)n(3

4
)n

n!3
= 2−8n (4n)!

n!4
,

(1
6
)n(1

2
)n(5

6
)n

n!3
= 12−3n (6n)!

n!(2n)!(3n)!
.

Ramanujan’s original list has been later extended by several other series,
which we plan to touch later; for the moment we indicate two more cele-
brating examples:

∞∑
n=0

(1
3
)n(1

2
)n(2

3
)n

n!3
(14151n + 827) · (−1)n

5002n+1
=

3
√

3

π
, (8)

∞∑
n=0

(1
6
)n(1

2
)n(5

6
)n

n!3
(545140134n + 13591409) · (−1)n

533603n+2
=

3

2π
√

10005
. (9)
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Formula (8) is proven by H.H. Chan, W.-C. Liaw and V. Tan [7] and (9) is
famous Chudnovskys’ formula [8], which enabled them to hold the record in
the calculation of π in 1989–94. On the left-hand side of each formula (5)–
(9) we have linear combinations of a (generalised) hypergeometric series

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=

∞∑
n=0

(a1)n(a2)n · · · (am)n

(b2)n · · · (bm)n

zn

n!

and its derivative at a point close to the origin. The fast convergence of the
series in (6)–(9) may be used for proving the quantitative irrationality of
the numbers π

√
d with d ∈ N (see [16] for details).

In both Ramanujan’s and Apéry’s cases, there were just hints on how
the things might be proven. Rigorous proofs appeared somewhen later. We
will not discuss proofs of Apéry’s theorem and its further generalisations,
just concentrating on the things around remarkable Ramanujan-type se-
ries. Nevertheless, both Ramanujan’s and Apéry’s discoveries have several
common grounds, which will be underlined during the talk.

Although Ramanujan did not indicate how he arrived at his series, he
hinted the belonging of these series to what is now known as ‘the theories of
elliptic functions to alternative bases’. First rigorous mathematical proofs
of Ramanujan’s series and their generalisations were given by Borweins [6]
and Chudnovskys [8]. Let us sketch, following [8], basic ideas of that very
first proofs.

One starts with an elliptic curve y2 = 4x3 − g2x − g3 over Q with fun-
damental periods ω1, ω2 (where Im(ω2/ω1) > 0) and corresponding quasi-
periods η1, η2. Besides the Legendre relation

η1ω2 − η2ω1 = 2πi, (10)

in the CM (complex multiplication) case, i.e. when τ = ω2/ω1 ∈ Q[
√−d]

for some d ∈ N, the following linear relations between ω1, ω2, η1, η2 over Q
are available:

ω2 − τω1 = 0, Aτη2 − Cη1 + (2Aτ + B)αω1 = 0, (11)

where integers A, B and C come from the equation Aτ 2 + Bτ + C = 0
defining the quadratic number τ and α ∈ Q(τ, g2, g3) ⊂ Q. Equations (11)
allow one to express ω2, η2 by means of ω1, η1 only. Substituting these
expressions into (11), and using the hypergeometric formulae for ω1, η1 and
also for ω2

1, ω1η1 (followed from Clausen’s identity) one finally arrives at a
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formula of the Ramanujan type. An important (and complicated) problem
in the proof is computing the algebraic number

α =
2π2

9

(
E2(τ)− 3

π Im τ

)
, where E2(τ) = 1− 24

∞∑
n=1

e2πinτ
∑

d|n
d.

Note that α viewed as the function of τ is a non-holomorphic modular form
of weight 2. Chudnovskys attribute the knowledge of the fact that α(τ)
takes values in the Hilbert class field Q(τ, j(τ)) of Q(τ) to Kronecker (in
Weil’s presentation [15]).

Understanding of complication of the above proof came in 2002 with
T. Sato’s discovery of the remarkable formula

∞∑
n=0

un · (20n + 10− 3
√

5)

(√
5− 1

2

)12n

=
20
√

3 + 9
√

15

6π
(12)

of Ramanujan type, involving Apéry’s numbers (4). The modular argument
was essentially simplified by Heng Huat Chan with his collaborators and
later by Yi-Fan Yang to produce a lot of new identities like (12) based on a
not necessary hypergeometric series F (z) =

∑∞
n=0 unzn. Examples are

∞∑
n=0

n∑

k=0

(
n

k

)2(
2k

k

)(
2n− 2k

n− k

)
· (5n + 1)

(−1)n

64n
=

8

π
√

3

due to H. H. Chan, S.H. Chan and Z.-G. Liu (2003);

∞∑
n=0

[n/3]∑

k=0

(−1)n−k3n−3k (3k)!

k!3

(
n

3k

)(
n + k

k

)
· (4n + 1)

1

81n
=

3
√

3

2π

due to H. H. Chan and H. Verrill (2005);

∞∑
n=0

n∑

k=0

(
n

k

)4

· (4n + 1)
1

36n
=

18

π
√

15

due to Y. Yang (2005).

Remark. It should be now mentioned that the Picard–Fuchs differential
equations (of order 3) satisfied by the series F (z) always have very nice
arithmetic properties. Therefore, it is not surprising that F (z) admits a
modular parametrization: f(τ) = F (z(τ)) is a modular form of weight 2 for
a modular (uniformizing) substitution z = z(τ).
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Let us follow Yang’s argument to show basic ideas of the new proof on
the example of (12). Our choice is

z(τ) =

(
η(τ)η(6τ)

η(2τ)η(3τ)

)12

, f(τ) =
η(2τ)7η(3τ)7

η(τ)5η(6τ)5
,

which are modular forms of level 6. The function g(τ) = (2πi)−1f ′(τ)/f(τ)
satisfies the functional equation

g(γτ) =
c(cτ + d)

πi
+ (cτ + d)2g(τ) for γ =

(
a b
c d

)
∈ Γ0(6) + w6,

where w6 denotes the Atkin–Lehner involution. Taking

γ =
1√
6

(
0 −1
6 0

)
, τ = τ0 =

i√
30

we obtain

g(τ0) + 5g(5τ0) =

√
30

π
. (13)

On the other hand, h(τ) = g(τ)− 5g(5τ) is a modular form of weight 2 and
level 30 (on Γ0(30) + 〈w5, w6〉). This implies that h(τ)/f(τ) is an algebraic
function of z(τ) and after explicit evaluations at τ = τ0 we arrive at

g(τ0)−5g(5τ0) = h(τ0) =
900

√
2− 402

√
10

5
f(τ0) = (900

√
2−402

√
10)f(5τ0).

(14)
Thus combining (13) and (14) we deduce that

√
30

π
= (900

√
2− 402

√
10)f(5τ0) + 10g(5τ0),

and it remains to use the expansion

g(5τ0) = z
df/dz

f
· 1

2πi

z′(τ)

z(τ)

∣∣∣∣
τ=5τ0

= (108
√

2− 48
√

10)
∞∑

n=0

nun · z(5τ0)
n

and evaluation

z(5τ0) = z(τ0) = 161− 72
√

5 =

(√
5− 1

2

)12

.
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There is yet another proof but available for a small amount of Ramanu-
jan-type series. It is based on the algorithm of creative telescoping, due
to Gosper–Zeilberger, that was a crucial point in the first proof of Apéry’s
theorem [13]. D. Zeilberger (and his automatic collaborator S. Ekhad) could
prove the simplest Ramanujan’s identity (5) in the following way. One
verifies the (terminating) identity

∞∑
n=0

(1/2)2
n(−k)n

n!2(3/2 + k)n

(4n + 1)(−1)n =
Γ(3/2 + k)

Γ(3/2)Γ(1 + k)
(15)

for all non-negative integers k. To do this, divide both sides of (15) by the
right-hand side and denote the summand on the left by F (n, k); then take

G(n, k) =
(2n + 1)2

(2n + 2k + 3)(4n + 1)
F (n, k)

with the motive F (n, k + 1) − F (n, k) = G(n, k) − G(n − 1, k), hence∑
n F (n, k) is a constant, which is seen to be 1 by plugging k = 0. To

deduce finally (5) one takes k = −1/2, which is legitimate in view of Carl-
son’s theorem.

If one wishes to use the latter proof for another Ramanujan-type for-
mula, then an ingenuity for putting the new parameter k on a right place
is required. This was done only recently by J. Guillera [10, 12], who proved
by the method some other Ramanujan’s identies (in those cases when z has
only 2 and 3 in its prime decomposition). If one now doubts on the appli-
cability of the method, then take into account that a pure hypergeometric
origin of the method and its independence on the modular stuff allowed
Guillera [10, 11, 12] to prove new generalisations of Ramanujan-type series,
namely,

∞∑
n=0

(1
2
)5
n

n!5
(20n2 + 8n + 1)

(−1)n

22n
=

8

π2
, (16)

∞∑
n=0

(1
2
)5
n

n!5
(820n2 + 180n + 1)

(−1)n

210n
=

128

π2
, (17)

∞∑
n=0

(1
2
)3
n(1

4
)n(3

4
)n

n!5
(120n2 + 34n + 3)

1

24n
=

32

π2
, (18)
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and also to find experimentally [11] four additional formulae

∞∑
n=0

(1
2
)n(1

4
)n(3

4
)n(1

6
)n(5

6
)n

n!5
(1640n2 + 278n + 15)

(−1)n

210n
=

256
√

3

3π2
, (19)

∞∑
n=0

(1
2
)n(1

4
)n(3

4
)n(1

3
)n(2

3
)n

n!5
(252n2 + 63n + 5)

(−1)n

48n
=

48

π2
, (20)

∞∑
n=0

(1
2
)n(1

3
)n(2

3
)n(1

6
)n(5

6
)n

n!5
(5418n2 + 693n + 29)

(−1)n

803n
=

128
√

5

π2
, (21)

∞∑
n=0

(1
2
)n(1

8
)n(3

8
)n(5

8
)n(7

8
)n

n!5
(1920n2 + 304n + 15)

1

74n
=

56
√

7

π2
. (22)

As Guillera notes, the series in (20)–(22) are closely related to the (‘modular’
proven) series

∞∑
n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(28n + 3)

(−1)n

48n
=

16

π
√

3
,

∞∑
n=0

(1
2
)n(1

6
)n(5

6
)n

n!3
(5418n + 263)

(−1)n

803n
=

640
√

15

3π
,

∞∑
n=0

(1
2
)n(1

4
)n(3

4
)n

n!3
(40n + 3)

1

74n
=

49

3π
√

3
,

respectively. However, there is no obvious way to deduce any of formu-
lae (16)–(22) by modular means; a problem lies upon the fact that the
(Zariski closure of the) projective monodromy group for corresponding se-
ries F (z) =

∑∞
n=0 unzn is always O5(R) that is essentially richer than O3(R)

for classical Ramanujan’s series. There exists also the following higher-
dimensional identity

∞∑
n=0

(1
2
)7
n

n!7
(168n3 + 76n2 + 14n + 1)

1

26n
=

32

π3
,

discovered by B. Gourevich in 2002 (by using an integer relations algorithm).
Guillera also found experimentally an analogue of Sato’s series:

∞∑
n=0

vn · (36n2 + 12n + 1)
1

210n
=

32

π2
,

where vn =

(
2n

n

)2 n∑

k=0

(
2k

k

)2(
2n− 2k

n− k

)2

.

(23)
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Using the quadratic transformation z 7→ −4z/(1−z)2 of the hypergeometric
series we were able to produce from (16), (17) two more series of the latter
type [17]:

∞∑
n=0

wn
(4n)!

n!2(2n)!
(18n2 − 10n− 3)

1

(2852)n
=

10
√

5

π2
, (24)

∞∑
n=0

wn
(4n)!

n!2(2n)!
(1046529n2 + 227104n + 16032)

1

(54412)n
=

5441
√

41

π2
, (25)

where the sequence of integers

wn =
n∑

k=0

(
2k

k

)3(
2n− 2k

n− k

)
24(n−k), n = 0, 1, 2, . . . ,

satisfies the recurrence relation

(n+1)3wn+1−8(2n+1)(8n2+8n+5)wn+4096n3wn−1 = 0, n = 1, 2, . . . .

It is worth mentioning that identities like (15) are valid for all non-
negative real values of k. This fact has several other curious implications;
for instance, the series

G(k) =
∞∑

n=0

(1/2 + k)5
n

(1 + k)5
n

(
820(n + k)2 + 180(n + k) + 13

)(−1)n

210n
, (26)

has closed-form evaluation at k = 0 and k = 1/2:

G(0) =
128

π2
and G(1

2
) = 256ζ(3),

where the first formula follows from (17), while the second one was given by
T. Amdeberhan and D. Zeilberger [3]. Guillera has (proven and conjectured)
evaluations for the series like (26) viewed as a function of the continious
(complex or real) parameter k.

It seems to be a challenge to develop a modular-like theory for proving
Guillera’s identities and finding out a (more or less) general pattern of them.
For the moment, we have only speculations in this respect on a relationship
to the mirror symmetry, namely, to the linear differential equations for the
periods of certain Calabi–Yau threefolds. A standard example here is the
hypergeometric series (cf. (16) and (17))

F (z) = 5F4

(
1
2
, 1

2
, 1

2
, 1

2
, 1

2

1, 1, 1, 1

∣∣∣∣ z

)
=

∞∑
n=0

(1
2
)5
n

n!5
zn,
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which satisfies the 5th-order linear differential equation

(
θ5 − z(θ + 1

2
)5

)
Y = 0, where θ = z

d

dz
.

If G(z) is another solution of the latter equation, then

F̃ (z) = (1− z)−1/2 det

(
F G
θF θG

)1/2

(the sharp normalization factor (1− z)−1/2 is due to Y. Yang) satisfies the
4th-order equation

(
θ4 − z

64
(128θ4 + 256θ3 + 304θ2 + 176θ + 39) + z2(θ + 1)4

)
Y = 0,

which imitates all properties of a differential equation for the periods of
a Calabi–Yau threefold (this is entrance #204 in [2], Table A). Are there
analogues of Hilbert class fields for this and similar situations?
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[5] B.C. Berndt, Ramanujan’s notebooks. Part IV, Springer-Verlag, New
York (1994).

[6] J.M. Borwein and P.B. Borwein, Pi and the AGM, Wiley, New
York (1987).

9



[7] Heng Huat Chan, Wen-Chin Liaw and V. Tan, Ramanujan’s
class invariant λn and a new class of series for 1/π, J. London Math.
Soc. (2) 64:1 (2001), 93–106.

[8] D.V. Chudnovsky and G.V. Chudnovsky, Approximations and
complex multiplication according to Ramanujan, Ramanujan revisited
(Urbana-Champaign, Ill., 1987), Academic Press, Boston, MA (1988),
pp. 375–472.

[9] S.B. Ekhad and D. Zeilberger, A WZ proof of Ramanujan’s for-
mula for π, Geometry, Analysis, and Mechanics, J.M. Rassias (ed.),
World Scientific, Singapore (1994), pp. 107–108.

[10] J. Guillera, Some binomial series obtained by the WZ-method, Adv.
in Appl. Math. 29:4 (2002), 599–603.

[11] J. Guillera, About a new kind of Ramanujan-type series, Experi-
ment. Math. 12:4 (2003), 507–510.

[12] J. Guillera, Generators of some Ramanujan formulas, Ramanujan
J. 11:1 (2006), 41–48.

[13] A. van der Poorten, A proof that Euler missed... Apéry’s proof of
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