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Irrationality of values of the Riemann zeta function

W. Zudilin

Abstract. The paper deals with a generalization of Rivoal’s construction, which
enables one to construct linear approximating forms in 1 and the values of the
zeta function ((s) only at odd points. We prove theorems on the irrationality of the
number ((s) for some odd integers s in a given segment of the set of positive integers.
Using certain refined arithmetical estimates, we strengthen Rivoal’s original results
on the linear independence of the ((s).

Introduction
The study of the arithmetical nature of the values of the Riemann zeta function
(oo}
1
((s) = e
n=1
at integers s > 1 is one of the most attractive topics of the modern number theory.
In spite of the deceptive simplicity of this problem, the results obtained in this area
in the course of more than two centuries are far from being exhaustive. Euler’s
formula (2mi)* B
71)% By
§) = ——"—=, $§=2,4,6,...,
¢(s) o
in which the values of the zeta function at even integers are expressed in terms
of m ~ 3.1415926 and the Bernoulli numbers B; € Q, which are defined by the
generating function

t —
et —1

t oy 1
1_54_2385, By =0 forodd s> 3,
s=2

undoubtedly marked the first progress in this area. In 1882 Lindemann proved
that 7 is a transcendental number, which implies that {(s) is transcendental if s is
even.

The problem of the irrationality of the values of the zeta function at odd integers
seemed inaccessible until 1978, when Apéry [1] produced a sequence of rational
approximations proving that ((3) is irrational.

This research was supported in part by INTAS and the Russian Foundation for Basic Research
(grant no. IR-97-1904).
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Apéry’s Theorem. The number ((3) is irrational.

The history of this discovery and a rigorous mathematical justification of Apéry’s
observations can be found in [2]. The phenomenon of Apéry’s sequence was repeat-
edly interpreted from the point of view of various analytical methods of number
theory (see [3]-[8]). New approaches made it possible to strengthen Apéry’s result
quantitatively, that is, to obtain a “good” measure of the irrationality of {(3) (][9]
and [10] represent the latest stages of the competition in this area).

Unfortunately, natural generalizations of Apéry’s construction involve linear
forms containing values of the zeta function at both odd and even integers (the
interest in which faded after the Euler-Lindemann result). This circumstance
makes it impossible to obtain results on the irrationality of ((s) for odd s > 5
by this method. Interesting attempts to approach this problem can be found in the
preprints [11] and [12].

Finally, in 2000 Rivoal [13] equipped an auxiliary rational function with a sym-
metry and constructed linear forms containing the values of the zeta function only
at odd integers s > 1.

Rivoal’s Theorem. The sequence ((3),((5),¢((7),... contains infinitely many
irrational numbers. More precisely, the following estimate holds for the dimen-
sion 6(a) of the spaces generated over Q by 1,((3),¢(5),...,¢(a — 2),{(a) with an
odd integer a:

1
5(a) > oga

/TlogQ(l_‘_o(l)), a — OQ.

In this paper we generalize Rivoal’s construction [13] and prove the following
theorems.

Theorem 0.1. Fach of the sets

{¢(5), <(7), €(9), €(11), ¢(13), ¢(15),
{<(7), €(9), -+, €(35), BT}, {€(9),

(

17), ¢(19), ¢(21)},
(11

¢
can, ..., 1), ¢ Y

contains at least one irrational number.t

Theorem 0.2. For every odd integer b > 1 at least one of the numbers

C(b+2), C(b+4), ..., ¢(8b—3), ¢(8—1)

18 irrational.

Theorem 0.3. There are odd integers a1 < 145 and az < 1971 such that 1,{(3),
¢(a1),¢(az) are linearly independent over Q.

Theorem 0.3 strengthens the corresponding theorem in [15], where it was estab-
lished that 1, (3),{(a) with some odd integer a < 169 are linearly independent.

1When the work on this paper was finished, I was informed that Rivoal [14] had obtained the
assertion of Theorem 0.1 for the first set in (0.1) independently, using another generalization of
the construction in [13].

Added in proof. 1 have recently obtained some refinements of Theorem 0.1. In particular, I
have shown [28] that at least one of the four numbers ¢(5),{(7),¢(9),¢(11) is irrational.
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Theorem 0.4. The following absolute estimate holds for every odd integer a > 3:

2 1
d(a) >0.395 loga > = ogd

=R 2
3 1+log2 (0-2)

This paper is organized as follows. In § 1 we describe an analytical construction
of linear forms in the values of the zeta function at odd integers. In §§2-4 we
study the asymptotics of linear forms, their coefficients and denominators. Finally,
in §5 we give complete proofs of the results. The main ingredient in the proofs of
Theorems 0.3 and 0.4 (as well as in [13]) is the following special case of Nesterenko’s
theorem [16].

Criterion for linear independence. Assume that for a given set of real numbers
0o,01,...,0m, m =1, one can find a sequence of linear forms

I, = Ao b + A1 nbr + -+ A O,y n=12,...,
with integer coefficients and numbers a > 0 and B > 0 such that

log |I,| = —na + o(n), log Orgnjs%xm{|Ajm|} <nfB+ o(n)

asn — 0o. Then

dimg(Q + QO + -+ -+ Qb)) > 1+ %.

Let us note that the justification of Theorems 0.1-0.4 is based on the saddle-point
method and follows the scheme of proof of Apéry’s theorem in [8]. It should be
noted that some arithmetical results for the values of polylogarithms were obtained
in [17], where the saddle-point method was used. The dissertation [17] served a
link between our empirical observations and the rigorous justification in §2. In §4
we improve the arithmetical estimates (for the denominators of numerical linear
forms) following [18], [9], [10], which enables us to refine the lower estimate for d(a)
in Theorems 0.3 and 0.4 for small values of a. Finally, in §3 we obtain an upper
estimate for the coefficients of linear forms and asymptotics of their growth.

The main results of this paper were announced in [19].

I am grateful to Professor Yu. V. Nesterenko for his constant interest and valuable
advice, which have enabled me to improve this paper.

§1. An analytical construction

In this section we describe an analytical construction that enables us to obtain
“good” linear forms with rational coeflicients in the values of the zeta function at
odd integers.

Let us fix positive integer parameters a, b, r such that 2rb < a and a + b is even.
For every positive integer n we consider the rational function

B ((ti (n+1))---(tx (n+2rn)))b

= Rl (tt£1)-(t+n)” EET (LY
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Here and below (¢ & I) means that the product (sum or set) contains the factors
(summands or elements) ¢ — I and ¢t 4+ 1. We assign to the function defined by (1.1)
the sum

> 1 d'R(t)
I=I,:= > : 1.2
L= (=11 At (12)

It is easy to see that the sum in (1.2) is taken only over integers ¢t > n + 2rn.
The series on the right-hand side of (1.2) converges absolutely, since the degrees of
the numerator and the denominator of the rational function (1.1) are equal to 4rbn
and a(2n + 1) > 4rbn + a > 4rbn + 2, respectively, whence

R(t)=0<1> and w:c)(l), £ o0 (1.3)

2 deb—1 2

Applying Laplace’s method to the integral representation of the sum in formula (1.2),
we can calculate the quantity

— log|[
li log | n| > —00

x= Hm = 44
(the details can be found in §2 below), following [8] and [17].
Lemma 1.1. For everyn = 1,2, ... the number defined by formula (1.2) is a linear

form in 1 and the values of the zeta function at odd integers s, b < s < a + b:

I= Y Al(s) - Ao (1.5)

s is odd
b<s<a+b

Proof. Decomposing the function (1.1) into a sum of partial fractions

N Ag,a Ag2 A
R(t)_k;n<(t+k)a+ +<t+k)2+t+k>, (1.6)

we note that

> Apa= —Res R(t) = 0 (1.7)

k=—n

by (1.3). Since the function (1.1) is even (odd), that is,
R(—t) = (=1)*R(t), (1.8)
and the decomposition (1.6) is unique, we have
Apj=(-1)"TA E=0,%1,...,4n, j=1,2,...,a.

Hence,

D> A;=(-1)*7 Y Ay;=0 ifa—jisodd, j=2,...,a. (19

k=—n k=—n
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Substituting (1.6) into (1.2), we obtain that

vor= 33 (0 e

t=n+1k=—n
a+b—3\  Agra-1 b A2 A1
+< b1 ><t+k>a+b—2+ i (b—l) (E+kpet " <t+k>b>'

Simple transformations yield the formula

I'=Aapp-1C(a+b—1)+ Agsp-2((a+b—2) + -+ A((b) — Ay, (1.10)

where
B _1 n
Aj :(—l)b_1 (é_1> Z Ak j—b+1, j=bb+1,...,a+b-1, (1.11)
k=—n
n ki a+b—2\ A b Ap 2 A1
i b—1 - ,a , ,
ao= 0 3 S () e e (D) )

k=—mi=1 (1.12)

By (1.7), we have A, = 0. Hence, the expression on the right-hand side of (1.10)
is well defined even in the case when b = 1. Since a+b is even, formula (1.9) implies
that A; = 0 if j > b is even. Hence, formula (1.10) means that I is a linear form
in 1 and the values of the zeta function at odd integers s, b+1<s<a+b—1, as
was to be shown.

The following lemma enables us to calculate the denominators of linear
forms (1.2).

Lemma 1.2 (cf. [20], [13]). Assume that for some polynomial P(t) of degree < n
the rational function

P(t)
(t+s)t+s+1)---(t+s+n)

R(t) = (1.13)

(this representation does not have to be irreducible) satisfies the conditions

(R(t)(t + k) €7, k=s,s+1,....,s+n. (1.14)

Pa—
Then o
D &
4! ded

(R(t)(t—l—k)) €7, k=s,s+1,...,5+n,

t=—k

for all non-negative integers j, where Dy, is the least common multiple of 1,2, ..., n.

Proof. Decomposing the rational function (1.13) into a sum of partial fractions, we
obtain that
s+n Bl

R(t) = lz:;t—ﬂ’
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where
Bl:(R(t)(t—l—l))|t:_lEZ, l=s,s+1,...,5s+n.
Therefore,
s+n s+n
B B =B, B(1+—
R(t)(t+ k) = k+z 13 k+z z( +t+l>
l;ék l#k
whence
1 dj s+n (k _ l) s+n
- = — (-1 2078
,]' dt] (R(t)(t+ k)) ik ( ) Z (t+ l)J+1 — =
l;ék l#k

This completes the proof of the assertion.

Remark 1.1. Lemma 1.2 was stated by Nesterenko [21]. Nikishin [20] applied it to
the polynomial
Pit)=(t+p+1)---(t+p+n)

withp —s € Z and p+n < s or p > s+ n. Rivoal observed [13] that (1.14) holds
for P(t) = n!. In each of these cases By, k = s,s + 1,...,s + n, are binomial
coefficients, and (1.14) is easily verified.

It is easy to see that the rational function (1.1) can be written as a product of
the functions

_ tEt(m+1) - (t£ (m+2n))

F(t) = Fpm(t) , n<m, (1.15)
(tt +1)---(t £ n))”
2n)!
H(t) = Hy(t) := t(tilg---(tin) (1.16)
(see formula (1.22) below).
Lemma 1.3. The following inclusions hold for functions (1.15) and (1.16):
dJ 2 .
' d](F(t)(H—k)) €7, E=0,%1,...,4n, j=0,1,2,...,
Jhodt t=—k (1.17)
D} &’
T”—.(H(t)(ﬂ—k)) €z, E=0,%41,....,4+n, j=0,1,2,...,
where Day, is the least common multiple of 1,2,...,2n.

Proof. The inclusions (1.18) follow from Lemma 1.2 applied to the rational func-
tion (1.16). We prove (1.17) using Lemma 1.2 for the rational functions

(t—(m+1) - (t— (m+2n))
tt+1)---(t+n) ’

(t+(m+1)---(t+ (m+2n))
tt+1)---(t+n)

R_(t) =
(1.19)

Ry (t) =
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and the Leibniz rule for the jth derivative of the product R_(¢) R (t) = F(¢). The
assumptions (1.14) hold for each rational function in (1.16) and (1.19), since

n 2n)! n 2n
(HOE+E)],__, = (1) +km = (=) <n+ k) €z,

(Bt + i)y = (" on ) () ez

m+2n—k 2n
Ry(t)(t+k = (=1t 7
(reote+ 1)y = ("o ) o () €
for all k =0,+1,...,+n. This completes the proof of the lemma.

In what follows the denominator den(I) of the linear form I = Ay +
A101 + -+ + Ap By, is defined to be the least rational (not necessarily integer)
D > 0 such that every DAy, DA;, ..., DA,, is an integer.

Lemma 1.4. The following inclusions hold for the coefficients of the linear
form (1.5):
Dy AL € 7, (1.20)

where s is zero or an odd integer, b < s < a+b. Therefore, den(I,,) divides D50~

and

a+b—1
m log den(1,,) < lim log D3
n— o0 n n—o00 n

=2(a+b-1). (1.21)

Proof. To determine the coefficients in (1.6), we use the formula

1 de—i a .
ki = @) W(R(t)(wrk) ) ) kE=0,%1,...,4n, j=12,...,a,
and the representation
R(t) = (Ha ()" (Fun(t)® (Fu3n ()’ - - (Far—1)n,n(t))" (1.22)
of the rational function (1.1). The inclusions
DS IAL €Z,  k=0,41,....,4n, j=1,2,... 4, (1.23)

follow from Lemma 1.3 and the Leibniz rule for the differentiation of a product.
Inclusions (1.20) follow from (1.11), (1.12) and (1.23). The limiting relation (1.21)

follows from the formula
. log D,
lim =
n—oo n

(the prime number theorem). This completes the proof of the lemma.

1 (1.24)

So we have constructed a sequence of linear forms I,,, n = 1,2,.... By (1.4),
it contains an infinite subsequence of non-zero forms. The forms D‘Q’;'[ b-1g
n=1,2,..., have integer coeflicients. Hence, for

x+2a+b-1)<0 (1.25)

at least one of the numbers ((s), where s is an odd integer and b < s < a + b, is
irrational. Moreover, upper estimates for the coefficients of the linear forms (1.10)
in the case when (1.25) holds enable us to obtain a lower estimate for the number
of irrational numbers in the given set of values of the zeta function. This is why our
next step will be to calculate (1.4) and to find the asymptotics of the coefficients
of the linear forms (1.10) as n — oo.
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§2. An asymptotic estimate for linear forms

We shall need some supplementary properties of the function cot z.

Lemma 2.1. The mazimum value of the real-valued non-negative function h(y) =
| cot(z +iy)|, y € R, depends only on x (mod7Z) € R.

Proof. If * = wk for some integer k, then z = z is a (unique) pole of the func-
tion cotz on the line Imz = z (see (2.6) below). Therefore, in this case the
absolute maximum of h(y), which is equal to infinity, is attained at y = 0. In what
follows we assume that z ¢ 7Z, whence cos2x < 1. We have

2 _ o .2
h(y)? = C?S(m +1y) _ (e7¥ 4 e¥)cosx +i(e ¥ —eY) sin 2
sin(x + iy) (e7¥ —e¥)cosx +i(e¥ + e¥)sinz
_ e~ %Y + €2 + 2cos 2x _ 4 cos 2z
e~2V +e2¥ —2cos2T e~ + e2¥ — 2cos 2z
4| cos 2|
<14 19828 2.1
+ 2 —2cos2z 2.1)

Here we have used the inequality Y +1/Y > 2for Y = e~2¥ > 0, which becomes an
equality only in the case when Y = 1. The estimate on the right-hand side of (2.1)
depends only on z (mod 7Z), which completes the proof of the lemma.

We define “differential iterations” of the cotangent:

(=1)b=1 d*~Lcot 2
(b—1)! dzb-1

coty z = b=1,2,.... (2.2)

Lemma 2.2. For everyb=1,2,...
(a) the function coty z is a polynomial in cot z with rational coefficients:

coty 2z = Up(cot 2), Up(—y) = (—l)bUb(y), deg U, = b;
(b) the function sin® z - coty 2 is a polynomial in cos z with rational coefficients:
sin® z - coty, 2z = Vj(cos 2), Vi(—y) = (-1)*Vi(y), degVy, = max{1,b— 2}.
(2.3)

Proof. We proceed by induction. For b = 1 we have cot;z = cotz and
sin z - coty z = cos z, whence Ui (y) = Vi(y) = .
(a) According to the differential equation

dy

L= W+, y=cotz

and formula (2.2), the following recurrence relation holds for the polynomials Uy (y),
b=1,2,...:

1
Upy1(y) = 5(?/2 +1)UL(y), b=2,3,....

The induction step from b to b+ 1 shows that U1 (—y) = (=1)*"1U,41(y) and the
degree of Upy; is one greater than the degree of Us.
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(b) Assume that (2.3) holds for some integer b > 1. Then

b

sin z - aVb(cos z) =sinz- a(sin z - coty 2)

b +1

= bcosz - sin z-cotbz—l—sinb z - —coty z

dz

1. cotpy1 2,

= bcos z - Vy(cos z) — bsin®
whence

1
in’™ 2 - cotyy1 2 = cos z - Vy(cos z) — —sinz - — Vp(cos 2)

° b dz

1
= cos z - Vi(cos z) + —sin? z - V}/(cos 2)

b
= Voy1(cos 2),

where
Vissl) = sWh(0) + 50— ), (24)

Formula (2.4) and the induction hypothesis imply that V,41(y) is a polynomial
whose degree cannot exceed the degree of Vj(y) more than by one. Besides,
Upr1(—y) = (=1)*HU, 11 (y). Since Va(y) =1 (by (2.4)), we have deg V1 < b— 1.
The induction step from b to b+1 and relation (2.4) show that the coefficient of y*~*
in the polynomial V;1(y) is non-zero and equals 2°~!/b!. Hence, (2.3) holds for
allb=1,2,..., which completes the proof of the lemma.

Lemma 2.3. For any b=1,2,... and any integer k the following representation
holds in the neighbourhood of t = k:

7° coty Tt = +0(1), (2.5)

_
(t—Fk)®
where the function in O(1) is analytic in the neighbourhood of t = k. The function
cotp 7t s analytic in the neighbourhood of t € C\ Z

Proof. The second assertion of the lemma follows from formula (2.2) defining the
function cotp z and the decomposition of the cotangent into a sum of partial frac-

tions: -
1 1 1
twt = — _t — 2.6
™ cot t+z<t—m+t+m> (2.6)
m=1
(see, for example, [22], Ch. X, §3, formula (3)).
In the neighbourhood of t = k € Z we have

1 > 2mi)5(t — k)*
WCOt?TtZ?TCOt?T(t—k)Zm'(14-82::233%), (2.7)
where By, s = 2,3,..., are the Bernoulli numbers (see, for example, [22], Ch. X,

§3, formula (2)). Differentiating identity (2.7) b — 1 times, we obtain representa-
tion (2.5) and the first assertion of the lemma, which completes the proof.
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Lemma 2.4. The following integral representation holds for the sum in (1.2):

7.{.b 1 M+ioco
I= 5 /M ~ cotpmt - R(t) dt, (2.8)
—100

where M € R is an arbitrary constant in the interval n < M < (2r + 1)n.

Proof. Consider the integrand in (2.8) on the contour of the rectangle with vertices
M +iN, N +1/2+iN (see Fig. 1), where the integer N is sufficiently large,
N > (2r + 1)n. Since the function R(t) is analytic inside this rectangle and on its
boundary, Cauchy’s theorem and Lemma 2.3 imply that the integral

b M—iN N+1/2-iN N+41/24iN M+iN
2—</ +/ +/ +/ )COtbﬂ't-R(t)dt (2.9)
Yy’

M+iN M—iN N+1/2—iN N+1/24+iN
is equal to the sum of the residues of the integrand at t € Z, M < ¢t < N. Using (2.5)
and the expansion

R(b_l)(k)

Rt)=R(k)+R(k)-(t—Fk)+---+ -1

=k +O((t—k)")

in the neighbourhood of t = k € Z, M < k < N, we obtain that the integral (2.9)
is equal to

Z R_eks(ﬂb coty it - R(t)) = Z

M<k<N M<k<N

R(®- 1) N RO-— 1)
) 2.10
(b Z b — 1 ( )

+1

Imi¢
M +iN N+31+4iN
n (2r+1)n Ret
M —iN N+31-iN

Figure 1. The neighbourhood of the point z«
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Let us note that on the sides [N +1/2—iN, N +1/2+iN]|, [M —iN, N +1/2—iN]
and [N +1/2+iN, M +iN] of the rectangle we have R(t) = O(N~2) by (1.3), and
the function coty 7t is bounded. The latter assertion follows from assertion (a) of
Lemma 2.2 and the boundedness of cot 7t on the sides under consideration: for the
segment [N +1/2 — 4N, N +1/2+ iN| we use Lemma 2.1, while for the other two
segments we use the trivial estimate

14+ eiQﬂ'ix . e—27r|y| 14+ e—27r|y|

ST e—znlyl

1 — ef2miz . e—27r|y| GRS R’

| cot 7(z + iy)| = ‘

for y = £ N. Therefore,
N+1/2—iN N+1/24+iN M+iN
(/ +/ +/ ) coty it - R(t)dt = O(N1).
M—iN N+1/2—iN N+1/2+iN

Passing to the limit in (2.9) as N — oo, we obtain the right-hand side of (2.8). Pass-
ing to the limit in (2.10), we obtain the desired sum (1.2), which completes the proof
of the lemma.

Lemma 2.5. The following relation holds for (1.2) as n — oo:

I f (_1)bn(2\/ﬁ)la—2rb(2ﬂ.)b (1 N O(n—l)),

where

5 5 1 H4-i00
I=1,:= ——_/ sin® i - coty wnT - (7 . g(7) dr, (2.11)
270 Jy—ico

f(r) =b(r+2r +1)log(t +2r + 1) + b(—7 + 2r 4+ 1) log(—7 + 2r + 1)

+(a+b)(t—1)log(t — 1) — (a+ b)(7 +1)log(T + 1) + (a — 2rb)21og 2,

(2.12)
) 1)6/2(— 9 1)6/2
(T+2r+1)%(—7+2r+1) (2.13)

g(1) = (r + )@/2(r — 1)(@rh/z

and p € R is an arbitrary constant in the interval 1 < p < 2r + 1.

Remark 2.1. To define the functions f(7) and g(7) unambiguously, we consider
them in the 7-plane with cuts along the rays (—oo, 1] and [2r 4+ 1, +00), fixing the
branches of logarithms that take real values on the interval (1,2r + 1) of the real
axis. This choice of branches is motivated by the following proof.

Proof. Using the formula I'(z + 1) = 2I'(z), we express the rational function (1.1)
in terms of the gamma function:

oy (TEEHCr+Dn+ D\ TOTA 1) \* L oo
R =(=1) ( T(Et+n+1) )(F(it+n+1)> (2m)1o727%, - (2.14)

where, as before, + stands for two factors in the product. We transform the inte-
grand in (2.8) using formula (2.14) for R(¢) and the identity

(01 —t) = —

= (=1)"I(~t +n+ 1T(t —n).

sin 7t
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We have

(—l)bn . sin® 7t F(:l:t + (27“ + 1)n + 1)b1“(t _ n)a—i—b o
= m T(t+n+ 1)ath (2n)t*7% (2.15)

Substituting this expression into (2.8), we obtain the formula

_1)bng pMico
I = (=1 / sin® 7t - coty it
27 M —ico

y (£t + (2r + 1)n + 1)°T(t — n)eto(2n)la—2r?
[(t +n+1)etb

dt

—1)bn(9p)a—2rb; M+ioco —t 9 1 b(t ) 1 b
LRI P g O D )
27 M —ioco (t + n)a—i—b
(£t 2 Dn)bT(t — n)etbT(2n)e—2r0
| Tt (2r+ D)L= n)'Tny =2 16)
F(t—l—n)a+b

where M € R is an arbitrary constant in the interval n < M < (2r 4+ 1)n. We put
M = pn for p € R in the interval 1 < p < 2r 4 1.
The asymptotics of the gamma function

logT'(z) = (z—%) logz—z+log\/ﬂ+0(|z|_1) (2.17)

(see, for example, [23], §3.10) implies that the following formulae hold on the
contour of integration in (2.16):

logl'(£t + (2r +1)n) = (it +@2r+1)n— %) log(£t + (2r + 1)n)
— (£t + (2r + 1)n) +log V21 + O(n™Y),

logT'(t +n) = <t+ n— %) log(t +n) — (t +n) + logvV2r + O(n™ 1),

logT'(t —n) = (t —n— %) log(t —n) — (t —n) +log V21 + O(n™1),

1
logT'(2n) = <2n - 5) log(2n) — 2n +log V21 +O(n™1).
The change t = n7 in the integrals in (2.16) yields

I (_1)bn(2\/ﬁ)a—2rb(2ﬂ.)b—li /;L—i-ioo

sin® mnt - coty nT - (D)
na—l

(7 +2r + 1)%2(—1 4+ 2r + 1)¥/2
(r £ D2 (r —1)ath)2

(1 + O(n_l)) dr,

where f(7) is the function defined in (2.12) and ¢ = M/n € R is an arbitrary
constant in the interval 1 < p < 2r + 1. This completes the proof of the lemma.
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By assertion (b) of Lemma 2.2 the integral in (2.11) can be written as

. 1 & ptico .
I = ~9ms Z Ck/ . en(f(ﬂ’)—kmﬂ')g(T) dr, Ch = C_k, (2.18)
k=—p Jp—ioo

where the sum is taken over those k that have even parity with b, and c_, = ¢, =0
if b > 1.

Lemma 2.6. For u, A€ R, 1 < u < 2r+1, and n a positive integer we put

1 p+ic0 )
Ina = 3 . e”(f(T)_)‘””)g(T) dr. (2.19)
pn—1ico

Then
Jn,—)\ = Jn,)\a
where the bar stands for complex conjugation.
Proof. Applying Schwarz’ reflection principle to the functions f(7), g(7) analytic
in C\ ((—o0,1]U [2r + 1,400)) and taking real values on the interval (1,2r + 1)

(see, for example, [24], Ch. III, § 7, Proposition 7.1) and making the change 7 — 7
in the integral in (2.19), we obtain that

1 ptioco ~ B 1 ptioo ~ B
Jn = — en(f(T)—)\TmT)g(,]:) d7 = __/ en(f(T)—)\TmT)g(i_) dr
’ 27TZ p—ioco 27TZ p—ioco
T ey ——
= — e FOHATT) o (Y dr = T, _»
210y ioo e

as was to be shown.
Corollary 2.1. The integral in (2.11) can be written as
. b
I=-2 Y cRelyy, (2.20)
k=0
k=b (mod 2)

where ci, are some (rational) constants, ¢4 = 1 for b =1 and ¢y, = 0, cp_2 # 0
forb>1.

Proof. The desired representation (2.20) follows immediately from assertion (b) of
Lemma 2.2, formula (2.18), and Lemma 2.6.

Now let us calculate the asymptotics of the integrals on the right-hand side
of (2.18) using the saddle-point method. We have to determine the saddle points of
the integrands, that is, the zeros of the derivatives of the functions f(7) — ki,
k=0,%1,...,£b, k =b (mod2). It is easy to verify that the roots of the derivative

d

3 (f(7) = kmiT) = blog(r +2r + 1) — blog(—7 +2r + 1)
+ (a+b)log(t — 1) — (a + b) log(t + 1) — ki,

k=0,+1,...,4b, k=0 (mod?2),
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are simultaneously the roots of the polynomial
(r+2r+ 1)1 = 1)+ — (1 — 2r — 1)°(r + 1)**°, (2.21)

whose quantity is equal to the degree a + 2b — 1 of this polynomial.

Lemma 2.7. Let a,b,r be positive integers, let a+b be even, a > 3rb, and let f(T)
be the function defined by (2.12), where the corresponding branches of the logarithms
in the cut plane C\ ((—o0, 1JU[2r+1, +00)) take real values on the interval (1, 2r+1).
Then the equation

f(r) = ri =0, AeR, (2.22)

has

(a) a pair of real solutions —pug +1i0 with po symmetric with respect to the imag-
inary azxis for A =0, where pg € (1,2r +1), and + ( =) in £i0 corresponds to the
upper (lower) bank of the cut (—o0, 1],

(b) a pair of real solutions —py £ 40 and py £ 90 symmetric with respect to
the imaginary axis for A = +b, where py € (2r + 1,400), and + ( —) in £i0
coincides with the sign of A and corresponds to the upper (lower) banks of the cuts
(—o0,1], [2r + 1, +00),

(¢) a real solution +i0 for A = £(a+b), where + ( —) in £i0 coincides with the
sign of A and corresponds to the upper (lower) bank of the cut (—oc, 1],

(d) a solution on the imaginary azis for the real X such that b < |\| < a+1b,

(e) a pair of complex solutions symmetric with respect to the imaginary axis for
the real A such that 0 < |A| < b.

All solutions of equation (2.22) corresponding to positive A are contained in the
half-plane Im7 > 0. All solutions corresponding to negative X are contained in
the half-plane Im T < 0. All solutions of equation (2.22) appear in the list (a)—(e).

Proof. Since

f(r) =blog(t +2r +1) —blog(—7 + 2r + 1)
+(a+0b)log(r—1) — (a+0b)log(r +1) (2.23)

and logz = log|z| + iargz, —m < argz < 7, for the main branch of the logarithm
with the cut (—o0, 0] in the z-plane, we have

|7+ 2r + 1)°|7 — 1]ot?

") =1 2.24

Re £1(7) Og|—T+2r—|—1|b|T—|— 1|atd’ ( )
Im f'(1) = barg(T + 2r + 1) — barg(—7 + 2r + 1)

+ (a+b)arg(r — 1) — (a + b) arg(r + 1), (2.25)

and the arguments arg(-) take the value zero on (1,2r + 1). Formula (2.25) has
the following geometrical interpretation in the notation of Fig. 2:

Im f'(7) = b(B- + B4) + (a +b)(ay — o) =b(r - §) + (a+ b)a, (2.26)
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whence Im f/(7) > 0if Im7 > 0 and Im f/(7) < 0 if Im7 < 0. By (2.24) and (2.26),
the set of solutions of equation (2.22) for every A is symmetric with respect
to the imaginary axis, and the symmetry 7 +— 7 maps it onto the set of solu-
tions of equation (2.22) with —\ instead of A. In what follows we deal with A > 0
and the upper half-plane. The results thus obtained can b transferred to the case
when A < 0 by the symmetry with respect to the real axis.

ImTt

v A

—2r—1 -1 0 1

2r+1 Rer
Figure 2
By (2.23), any solution of equation (2.22) is a root of the polynomial
(7 +2r + 1)(r = 1)**° — ™ (=7 421 + 1)°(7 + 1)°T, (2.27)

whose degree is equal to a + 2b — 1 if A is an integer that has even parity with b
(otherwise, its degree is equal to a + 2b). If A = b (mod 2), then this polynomial
coincides with (2.21).

(a), (c). If A =0 (or, which is the same, A = a + b), then the polynomial (2.27)
is an odd function. Therefore, 0 is one of its roots. The corresponding solution
+i0 of equation (2.22) corresponds to A = a + b, since @« = 8 = 7 in (2.26)
for 7 = 0. Calculating the values of the polynomial at 1,2r + 1 and using the
fact that this polynomial is odd, we obtain that it has a pair of real roots +puyg,
where pg € (1,2r + 1). We shall show later that pg is the unique real root in
(1,2r + 1), but until then we assume that g is the real root nearest to 2r + 1 of
the polynomial (2.27) with A = 0 in the above interval. By (2.26), the solutions
—pp + 40 and po correspond to A = 0 in equation (2.22).

(b) Calculating the values of (2.27) with A = b at 2r + 1, 400, we likewise obtain
that this polynomial has a pair of real roots +u;. We assume for the moment that
among the roots in the interval (2r + 1,4+00) the root uy € (2r + 1,400) is the
nearest to 2r +1. By (2.26), the solutions —u +¢0 and pq +¢0 correspond to A = b
in equation (2.22).

In the case when a > 3rb there is a better localization of the root p, namely,
1 € (2r +1,4r 4+ 1). Indeed, the value of the polynomial (2.27) at 47 + 1 is equal
to

(67 +2)°(4r)*+0 — (2r)°(4r 4-2)2T0 = (2r)b(4r)a+b<<3+ %)b - <1+ %)a%) <0,
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since

1 3 1
(3r+l)log<1+—>:4log—>2log2:log<3—|——> ifr=1,
r

2r

1 37“—!-1 7 1
3 1)1 1 - >2log2 >1 if r > 2
(r+)og<+2> 1 5> og >og<3+ ) if r ,

where we have used the elementary inequality

1 1 1
—— <logl( 1 — .
w1 2) <k -

which holds for all positive integers n, whence
1 1 1
(a+b)log(1+— ) > Br+1blog{1+ — ) >blog(3+ = ).
2r 2r r

(d) By (2.24), we have Re f’(7) = 0 on the imaginary axis. As 7 ranges over
the ray iy, y > 0, the angles a, 8 decrease continuously from 7 to 0. Therefore, the
function Im f(7) = b(m — B) + (a + b)« takes all intermediate values in the interval
(b, (a+ b)m). In particular, for every real A, b < A < a + b, we obtain at least one
solution of equation (2.22) that lies on the imaginary axis.

(e) We shall now localize the complex solutions of (2.22) corresponding to the
real A\, 0 < |A| < b.

Consider the semicircle of radius 2p with centre 2r +1, where p < r, in the upper
half-plane. For 7 = = + iy on this semicircle we have

| —7+2r + 112 = 4% |7+ 2r + 112 = 4p* + 4(2r + 1)z,
|7 — 1> = 4p* + drx — 4r(r + 1), |74+ 112 = 4p* +4(r + )z — 4r(r + 1).
(2.29)
By (2.24),
2Re /(1) = log - 2r £ Da)(p vz —r(r + 1)1 (2.30)

P2+ (r+ Da —r(r + D)o

We denote the function in (2.30) by f(z), 2r+1—2p <z <2r+1+2p. Itisa
monotonically increasing function of x, since

) = b(2r +1) (a+b)r 3 (a+b)(r+1)
P+2r+Dz pP+re—rir+1) P4+ +Dz—r@r+1)
b(2r +1) (@+b)(r(r+1)—p?)
r+ 1Lz —r(r+1))

4b(2r+1)  16(a+b)(r(r +1) — p?)
BESTESE 1P 1

1
TR D (Pt D)7+ (
0
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Therefore,
f@r+1-2p) < flz)< f2r+1+2p), ze(2r+1—2p2r+1+2p), (2.31)

and
Ref'(2r+1—2p) <Ref'(1) <Ref'(2r +1+ 2p+10) (2.32)

on the semicircle under consideration. Consider p = (u1 — 2r — 1)/2, where
1 € (2r + 1,400) is the real root of the polynomial (2.27) with A = b.
As mentioned above, 2r + 1 < p; < 4r + 1 if a > 3rb, that is, the assumption
p < r holds. By (2.32), we have

Re f'(1) < Re f'(pu1 +10) =0 (2.33)
for the points of the semicircle. Besides,

lim Re f'(1) = +oo. (2.34)

T—2r+1

Consider the rays starting from the point 2r +1 and contained in the upper half-
plane. By (2.33) and (2.34), each of these contains a point 7 belonging to the domain
bounded by the above semicircle and the real axis and such that Re f'(7) = 0.
Hence, this domain contains a part of the continuously differentiable curve

by |7+ 2r + 17 —1]2t0
Ref(T)—log|_T+2r+1|b|7_+1|a+b =0. (2.35)

(See Fig. 3, where this part of the curve is situated, according to (2.31), between
the two semicircles corresponding to p = (41 —2r —1)/2 and p = (2r + 1 — po)/2.)
By (2.26), the values of Im f’(7) on this curve as it approaches the real axis are equal
to 0 (at po) and brr (at p1). Therefore, Im f/(7) takes on the curve all intermediate
values between 0 and b, that is, the values Aw, where 0 < A < b. So we have
produced solutions of equation (2.22) for these A\. Every point obtained from these
by reflection in the imaginary axis also is a solution.

Imr

0 1 Ko 2r+1 B 4r+1 ReTt

Figure 3
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We have produced all the solutions of equation (2.22) listed in (a)-(e). To
complete the proof, we have to show that there are no others. Assume the contrary,
that is, assume that for some Ao € R there is a solution of equation (2.22) that is not
listed in (a)—(e). As mentioned above, this solution is a root of the polynomial (2.27)
with A = Ag. We claim that the number of roots of (2.27) listed in (a)—(e) is equal
to its degree, which will contradict our assumption.

If Ao is not an integer, then we have a purely imaginary solutions (see (d))
corresponding to A = Ag (mod 2), b < |A| < a+ b, and b pairs of complex solutions
(see (e)) corresponding to A = Ag (mod 2), |A| < b. Therefore, the total number of
roots of (2.27) with A = Xg listed in (d) and (e) is equal to the degree a + 2b of the
polynomial.

If o is an integer (even or odd), then a solution of equation (2.22) with A = X¢
is a root of the polynomial

(1 +2r + 1)%(r — )20 — (7 — 2r — 1)%(7 + 1)2(@F0), (2.36)

For this polynomial we have found two real roots £y in (a), two real roots s
in (b), one real root 0 in (c), 2(a — 1) purely imaginary roots in (d) and 4(b — 1)
complex roots in (e). The total number of roots of the polynomial (2.36) listed
in (a)—(e) is equal to its degree 2a + 4b — 1.

Hence, any solution of equation (2.22) is contained in the list (a)—(e). This
contradiction completes the proof of the lemma.

Remark 2.2. We replaced the original assumption a > 2rb by the stronger assump-
tion a > 3rb in Lemma 2.7 only in order to localize the root u;. Therefore,
Lemma 2.7 remains valid in the case when a > 2rb if

p1 < 4r + 1. (2.37)

Corollary 2.2. The set of T € C for which (2.35) holds is the union of the imagi-
nary azis and a pair of closed curves symmetric with respect to the imaginary azis
(see Fig. 4). These curves divide the complex plane into four parts, in each of which
the sign of Re f'(7) is constant.

ImTt
Ref'(t) <0
e “wo | o omof A
-1 1 ReTt
Refi(t)>0

Figure 4
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Corollary 2.3. Any semicircle of radius p, 2r +1 — pg < 2p < p1 — 2r — 1, with
centre 2r + 1 lying in the upper half-plane, intersects the curve (2.35) (see Fig. 3)
at precisely one point.

Proof. This assertion follows from inequalities (2.32), since the function Re f’(7) is
monotonic on any of these semicircles.

Lemma 2.8. Let a,b,r,n be positive integers, a > 2rb, let f(7),9(7) be as defined
in (2.12), (2.13), and let p, A € R, 1 < pn < 2r+ 1, |A| < b. Then the contour of
integration Re T = u in the integral

p+ioo )
/ ) =Xwim) o1 47 (2.38)
N

—100

can be replaced by any other contour L joining infinitely remote points in the
domains ReT > p, Im7 < 0 and ReT > u, Im7 > 0 and intersecting the real
azis at precisely one point T = p. In particular, L can go along the upper and (or)
lower bank of the cut [2r + 1,400).

Proof. For any real N > u we join the points of the original contour Re 7 = p and
those of the new contour £ by two arcs of radius N with centre at the origin. We
denote the corresponding points of intersection with the contours by My and L4
(see Fig. 5).

ImTt

Figure 5
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There are no singular points of the integrand in (2.38) inside the curvilinear
triangles L4 My and pM_L_. The lemma will be proved if we can show that

/ e (F@=37im) () dr 5 0, / AT gy dr 50 (2.39)
LM, M_L_

as N — oo, where Ly My and M_L_ are arcs of the circle of radius N with centre
at the origin.

On the arcs Ly My and M_L_ of the circle 7 = Ne' we have the inequalities
0<t<m/2and —7/2 < t < 0, respectively (the value ¢ = 0 is taken on the upper
and lower bank of the cut [2r 4+ 1,400)). Using Taylor’s formula, we obtain the
relations

. X —1t
log(7 + 1) = log(Ne' + 1) = log(Ne') + log (1 + eN )

—it 1

=log N + it + eN +O<W)’ (2.40)
e—it 1

log(r —1) = log N + it — —— + O(ﬁ)’ (2.41)

. . ) 1 —it
log(7 + 27 + 1) = log(Ne™ + 2r + 1) = log(Ne') + log<1 + %)
2r + 1)eit 1

ClogN 4+t + ZrE et T+N)e +O<W)’ (2.42)

log(—7 4+ 2r +1) = Fmi + 10g(N€it —(2r+1))
2r + 1)eit 1
= Fmi+log N + it — ( 7“+N)e +O<m>, (2.43)

where — (+) in Fmi in (2.43) corresponds to the arc Ly My ( M_L_) according
to the choice of branches of the logarithm. The constant in O(1/N?) in formu-
lae (2.40)—(2.43) is absolute, since |e~*| = 1 for real ¢. Substituting these expan-
sions into (2.12), we obtain the formula

f(r) = f(Ne™)
=(logN +it)(b(tr+2r+ 1)+ b(—7+2r + 1)+ (a +b)(r — 1) — (a+ b)(7 + 1))

—it

eN (b(2r + 1) (7 +2r +1) = b(2r + 1)(—7 +2r + 1)
—(a+b)(r—=1)=(a+b)(r+ 1))

+

Fai-b(—7+2r+1)+ (a — 2rb)2log2+0<%>
1

N .
= —2(a — 2rb) (log 7@ + it) +bri(Ne™ —2r —1) + O(N)’
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where the sign of +brm coincides with the sign of ¢ (and sint). Therefore,
. Ne . 1 1
Re(f(7) — Amit) = —2(a — 2rb) log 5 (bF A)wN|sint| 4+ O (N) < -

on the arcs Ly M, and M_L_ as N — co. (We have used the inequalities a > 2rb
and |A| < b.) Hence, the estimate

|en(f(7')—)\ﬂ'i7')| —en Re(f(r)—AmiT) <e (244)

holds for all sufficiently large N. The following trivial estimate holds for the func-
tion (2.13) on the arcs Ly M, and M_L_:

Nb/2 Nb/2 1 1
|g(T)| = O(N(a—i—b)/Q N(a+b)/2> = O(m) = O(m) as N — o0, (245)

since a > 2rb > 2. Since the length of each of the arcs Ly M, and M_L_ does not
exceed mN/2, estimates (2.44) and (2.45) imply that every integral in (2.39) is of
order O(1/N). Hence, the limiting relations (2.39) hold, which completes the proof
of the lemma.

Lemma 2.9. Let a,b,r be positive integers, a = 2rb, let f(7), g(T) be the functions
defined in (2.12) and (2.13), and let A € R, |[A| < b. Assume, moreover, that (2.37)

and the assumption
po +\/ug —1=m (2.46)

hold for the real roots pg € (1,2r + 1) and p1 € (2r + 1,400) of (2.36).

Then the asymptotic behaviour of the integral (2.38) with p = po as n — oo
is determined by the single saddle point 1o (the solution of equation (2.22)) in the
domain ImT > 0. More precisely, the following asymptotic formula holds:

1 Jo+i00

J - = n(f(r)=Amir) d
A o) ar

= (2m)712| " (ro)| /2 Re So(r0) | g (7y)| - =% xS (mo)Hiargg(ro) tin L fo(o)

X n_1/2(1 +0(n™h) asn — oo, (2.47)

where

fo(r) = f(7) = f'(m)r
=b(2r +1)log(T + 2r +1) + b(2r + 1) log(—7 + 2r 4+ 1)
—(a+b)log(t +1) — (a+ b)log(r — 1) + (a — 2rb)2log2. (2.48)

Proof. We shall prove the lemma only for A > 0. The case when A < 0 can be
reduced to this case by reflection in the real axis.
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According to Lemma 2.8, we replace the contour of integration in (2.38) with
1 = po by a contour consisting of rectilinear rays and segments. Let us note at once
that the derivative of Re f(7) on every such rectilinear part 7 = 71 + €¥t, t € R, is
given by the formula

a O o4 450

q Ref(r) = Re =g, at dr

) =Re f'(1) cosp —Im f'(7) sinp.
(2.49)
If A\ =0, then g is the unique maximum point of the function Re f(7) on the

line 7 = pg + it, —o0 < t < 400, since

C Re f(r) = —m f'(7)
and Im f’(7) takes negative values in the domain Im7 < 0 and positive ones in
the domain Im7 > 0. So, in the case when A = 0, we use the original contour
Ret = pp.

If A = b, then we replace the ray going from pg to po + 00 in the contour of
integration in (2.38) with u = po by a ray going from o to +oo along the upper
bank of the cut [2r + 1, +00). The function

Re(f(7) — AmiT) (2.50)

increases on the set 7 = pg + it, —oo < t < 0, since

%Re(f(r) —AriT) = —Im f'(7) + A = A > 0. (2.51)

On the set 7 = t, pg < t < 400, the function Re(f(r) — Awit) = Re f(7) has a
unique maximum point at ¢ = y3 (by Lemma 2.7 and Corollary 2.2).

ImTt
\\ Ref'(t) <0
\\
\}uo +/uf -1
0 1 2] 2r4+1 M1 ReTt

Figure 6

It remains to consider the case when A € (0,b). We replace the ray going
from po to wo + ico by the segment 7 = pg + €%t, 0 < ¢t < y/pi — 1, passing
through the saddle point 7y (the unique solution of equation (2.22) in the domain
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ReT > 0) and the ray 7 = €"?\/ud — 1+t, po < t < +00. By Corollary 2.3, the ray
T = po+e¥t, t > 0, intersects the curve Re f'(7) = 0 at a single point (namely, 79),
and 0 < ¢ < m/2. By (2.46), 7o is an interior point of the above segment (see
Fig. 6). On the ray 7 = pg + it, t < 0, the function (2.50) increases by (2.51). On

the ray 7 = €"?\/pud — 1 +t, t > po, it decreases, since

%Re(f(T) — Amit) = Re(f'(7) = Ami) = Re f'(r) <0

by Corollary 2.2. Hence, it is sufficient to show that 7y is the unique maximum
point of the function (2.50) on the segment 7 = o + €*t, 0 < t < t;, where
t1 = \/pu2 — 1. Assume that ¢y corresponds to the point 79 = o + €'ty on the
segment under consideration. By Corollary 2.3,

Re f'(uo + €'9t) <0 for 0 <t < to, Re f'(uo +€*t) >0 for tg <t < ty.
(2.52)
We claim that the function Im f’(7) increases monotonically on the segment
under consideration. Let us use the geometric interpretation (2.26) of the function
Im f'(7) once again. As t > 0 increases on the ray 7 = ug + €'#t, the angle 8
decreases monotonically from 7 to 0, whereas the angle « first increases from 0 to
some ¢ and then decreases from «ag to 0. We claim that the maximal value « is
attained on the ray at ¢t = ¢;, which will imply that the function

Im f'(7) = b(r — B) + (a + b)a

is monotonically increasing on the segment 7 = g + €?t, 0 < t < t1.

ImTt
T=z+1iy

ictga

)

|

!
-1 !0 1 Rert

Figure 7

The points 7 = x + iy of the upper half-plane at which the real segment [—1, 1]
subtends less than a given angle a belong to an arc of the circle of radius 1/sin«
with centre i cot « (this assertion for an acute angle « is depicted in Fig. 7):

z2 +y* —2ycota =1,
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whence
(1 22 4+y? -1
2y '
On the given ray, x = ug + tcos p and y = tsiny if t > 0, whence

a = CO

da (2 cos p + 2ysing) - 2y — 2singp - (22 + 4% — 1)

@ @+ D+ 2
?— (p* — 1)

@2 +y? — 12 + 442

= —2sinyp -

Therefore, the maximal value of « is attained at ¢ = y/pg — 1.
Since Im f’(7) is monotonically increasing on the segment 7 = g + ¢, 0 <
t < t1, we have

Im f'(uo + €*t) < Ar for 0 < t < to, Im f'(uo + €*t) > A for to < t < t;.
(2.53)
Combining (2.52), (2.53) and (2.49), we obtain that the function

%Re(f(r) — Amit) = Re f'(1) cosp — (Im f'(7) — Arr) singp
on the segment 7 = po + €%t, 0 < t < t1, changes sign from plus to minus only
when 7 passes through 79 = o + €¢tg. Hence, 7y is indeed the unique maximum
point on the segment and on the whole contour of integration consisting of this
segment and two rays.

To prove the asymptotic formula (2.47), we write down the contribution of the
saddle point 7g:

jud
2

(27T)1/2e —%’argf”(m)|f//(7-0)|—1/2en(f(fo)—/\wim)g(7-0)n—1/2(1+O(n—1)) (2.54)

(see, for example, [23], §5.7, formula (5.7.2)). We have

b b a+b a+d
T+27“—|—1+—T—|-27“—|-1 T—1 7+1
(@ —2rb)7% — (2r +1)(a — 2rb + 2ra) 20

(2 =1)(7%2 = (2r +1)?)

1) =

=2

at those 7 for which Re f/(7) = 0 (in particular, 79). Using the equality

f(m0) = Mmitg = f(70) — f'(70)70 = fo(70)

and separating the modulus and argument in (2.54), we obtain (2.47), which com-
pletes the proof of the lemma.

Corollary 2.4. Let the assumptions of Lemma 2.9 hold. Assume, moreover, that

—% arg f''(10) + arg g(70) # g (mod7Z) or Im fo(r0) # 0 (modnZ). (2.55)
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Then the following limiting relation holds for the integral

1 1 [rotice
ReJp = §(Jn7>\ +Jp ) = 2—7”/ e f(7) cos(AmnT)g(r)dr :
po—too

— log|Re J,
lim M — Refo(To)

22(a—2rb)|7_0 4+ or 4+ 1|b(2r+1)| — 704 2r + 1|b(2r+1)
70 + 1|a+0]7p — 1[ath (2'.56)

n— o0 n

= log

Moreover, in the case when
1
—5 a8 " (10) + arg g(10) =0 (mod 7Z) and Im fo(10) =0 (modnZ), (2.57)

the integral Jy, x has the real asymptotics (2.47), which implies that the upper limit
in (2.56) becomes a limit.

Proof. Assumption (2.55) implies that the real part of the coefficient of n=1/2 in
the asymptotic formula (2.47) is non-zero for an infinite sequence of numbers n. It
is on this sequence that the limiting relation (2.56) is attained. If (2.57) holds, then
the principal term of the asymptotics (2.47) is a real number, and (2.56) with lim
instead of lim follows immediately from (2.47).

We now state our definitive results concerning

— log|l,| - logl|l,|
» = lim = lim

(2.58)

(see Lemma 2.5). If b = 1 or b = 2, then the results take a simple form, and the
upper limits in (2.58) can be replaced by limits. Our assertions in these cases will
be stated as separate propositions.

Proposition 2.1. Let b = 1, let r be a positive integer, let a > 2r be an odd
integer, and let py € (2r + 1,4+00) be a real root of the polynomial (2.21). Then

1 I 22(a—2r) 9 1)2r+1 — 9 — 1)2r+1
= lim oglnlzlog (p +2r + )" (py — 2r = 1)°07

Jim == (i Dy — 1) (2.59)

Proof. In the case when b = 1, 7 = p; is the unique maximum point of the function
Re f(7) on the contour of integration for calculating the asymptotics of the inte-
gral J, 1 in the proof of Lemma 2.9 (the ray 7 = po +4t, t <0, and the ray 7 = ¢,
t > po, that goes along the upper bank of the cut [2r + 1, 4+00)). This implies, in
particular, that f”(u1) < 0, whence

1
—5arg () = g (mod 7Z).

In the case when b = 1 we have for the function (2.13) that

argg(m) = -3 and  Imfo(m) = —(2r + D).
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Using Corollary 2.4 with A =1 and 79 = py, we obtain that (2.57) holds and

. log|ReJy 1]
lim ———""1

n—oo n

= Re fo(p).
The formula I, = —Re Jn1 (see Corollary 2.1) and Lemma 2.5 imply that (2.59)
holds.

Proposition 2.2. Let b = 2, let r be a positive integer, assume that a > 4r is an
even integer, and let ug € (1,2r + 1) be a real root of the polynomial (2.21). Then

1 I 22(a—4r) 9 1 2(2r+1)(_ 9 1 2(2r+1)
nooo  m (1o + 1)42(pg — 1)a+2
Proof. If b = 2, then I, = —Jno, and 7 = po is the unique maximum on the
contour of integration 7 = ug + it, t € R, for calculating the asymptotics of

the integral J,, ¢ in the proof of Lemma 2.9. Therefore, f”'(uo) > 0, whence

1
—5 arg 1" (uo) =0 (mod 7Z).
It is obvious that

argg(u1) =0,  Imfo(pua) =0.
Corollary 2.4 with A = 0 and 79 = po implies that (2.57) holds and

. log|J,
lim log|Jnol _ Re fo(uo) = fo(ko)

n—oo n

Combining this with Lemma 2.5, we obtain (2.60).

Lemma 2.10. Assume that the real root g € (2r+1,+00) of the polynomial (2.21)
satisfies the inequality

(2.61)

i <2r+1+min{br(r+l) r(r+1) }

2(a+b) " 3(2r+1)

Then Re fo(T) regarded as a function of ReT increases in the domain Ret > 0,
Im7 >0 on curve (2.35).

Proof. As was shown in the proof of Lemma 2.7 (see also Corollary 2.3), on the
smooth curve (2.35) in the domain Re7>0,Im 7> 0 the quantity p=|7—(2r+1)|/2,
T = x + 1y, can be represented as an implicit function of x, pug < < w1, which is
continuously differentiable and increases. Using formulae (2.29), (2.30) and differ-
entiating with respect to x, we obtain the following formula on the curve defined
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by formula (2.35):

2pp/<——£+ a+b B a+b )
P+2r+lz p2 pPPH+rz—rir+1) pPP4+@r+lz—r(r+1)
( b(2r +1) (a+0b)r B (@a+0b)(r+1) )_0
PA+2r+Dz p24re—rir+1) p2+F+Dz—rr+1) '

Simple transformations yield that

9 b2r+1)  a+b \ _ b2r+ 1)p? (a+b)(r(r+1) — p?)
PP\ T @+ D2 Jrx12) " r£@r+1)2 BESIE
(2.62)

Therefore, the function Re fo(7) can be regarded on the curve (2.35) as a function
of z, up <z < p1. By (2.29), we have

p2b(2r+1)(p2 + (27,, + l)m)b(2r+1)
P e D) 4 Gt e el s D)

fo(m) :=2Re fo(7) = log

Combining this with (2.29) and (2.62), we obtain that

b(2r +1) b(2r +1)

fo(z) = 2,0,0’(

p? p*+(2r+ 1)z
a+b a+b )
pPrre—rir+1) pPP+@r+Dx—rr+1)
( b(2r + 1)? 3 (a+b)r 3 (a+b)(r+1) )
pPP+2r+l pPP+re—r(r+1) pPP+@T+lz—r(r+1)

= 3200 (20" + (2r + 1)g;)< b(2r +1) a+b )

T+ @2r+1))2 |JrE£1]2
b(2r + 1)p? (@+b)(r(r+1)—p?)
+m@r+”<hi@r+np EESTE )
64pp' (a+b)r(r+1) 32(a+b)r(r+ 1)z
T+ 1]2 B IESIE
32(p° + (2r + 1)z) ( b2r+1)p*  (a+b)(r(r+1)— p2)>
7+ (2r +1)[2 T 12

x
32(a+b)r(r+1)
|7+ 12

(2pp — ). (2.63)
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The function p = p(x) increases on the curve (2.35). Hence, p’ > 0. Continuing
the chain in (2.63), we obtain that

5 32(p? + (2r + 1)z)  b(2r +1)p? (a+b)(r(r+1)—p?)

folw) > v U ) PR R ST
_ 32(atbr(r+ 1z
|7+ 1]2
C26(2r+1)  2(a+b)((2r+1)p* 4+ r(r+ Dz —r(r+1)(2r +1))
N x B (P+rz—rr+1)p*+ T+ Dz—rir+1))
e br(r+1) r(r+1)
£ min{ 2(a+b) 3(2r + 1) } (2.64)

We have £ > pu3 — 2r — 1. The localization of the curve (2.35) (see Corollary 2.3)
implies that
rtl-e<a<2r+14e, 0<p<§,

whence

Pla) > 2b(2r+1)  2(a+b)(@2r+1)e/d+r(r+1))e

0 2r+1+4e¢ r(r+1)(r—e)(r+1—c¢)

b (a+b)2r+1+e)e
> 2(2 1 —
@r+ )<2r—|—1—|—5 D90l

br(r+1)(r—e)(r+1—¢)—ela+b)(2r+1+¢)?

(r+)(r—e)r+1-e)2r+1+e) g

=2(2r +1)-

Combining the inequalities

br(r+1)

S St b)’
r(r+1)

S 32r+1)

br(r+1) > S(a+b) it
8(r—e)(r+1—¢)>2r+1+¢)? if

with (2.64) and (2.65), we obtain that f}(z) > 0. Hence, Re fo(7), regarded as a
function of z = Re 7, increases on the curve (2.35), as was to be shown.

Proposition 2.3. Let a,b,r be positive integers, assume that a + b is even, b > 3,
a > 2rb, and assume that (2.61) holds for the real root p; € (2r + 1,4+00) of the
polynomial (2.21). Let

22(a—2rb)|7_0 ) P 1|b(2r+1)| — 104 2r+ 1|b(2r+1)
70 + 1|* 0|7 — 1[a+b

= log

)

where 1o s a complex root of the polynomial (2.21) in the domain ReT > 0, Im7 > 0
with mazimal real part Rety. Assume, moreover, that (2.55) holds. Then

= (2.66)
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Proof. The inequality (2.61) implies that pq — (2r + 1) < r/3. Hence, (2.37)
and (2.46) hold. By Lemma 2.10, the maximal value of the function Re fo(7)
on the roots of polynomial (2.21) is attained at T = 79, for which A =k = b—2. By
Corollary 2.4, the asymptotics of the integral (2.20) is determined by the contribu-
tion of Re J,, —2, since the contributions of the other quantities are exponentially
smaller in comparison with Re J,, 52, and the coefficient ¢;_5 in (2.20) is non-zero
by assertion (b) of Lemma 2.2. Therefore,

— log|l,| —— log|ReJynp 2|
lim = lim —-—————= =
n—00 n n—o0 n

Using Lemma 2.5, we obtain the desired relation (2.66).

§ 3. Estimates for the coefficients of linear forms

Our first result will be an upper estimate for the coefficients of linear forms.

Proposition 3.1. Let a, b, r be positive integers, assume that a+b is even, a > 2rb,
and let the linear forms (1.5) be defined by (1.2) and (1.1). Then the following
estimate holds for the coefficients Ag, s=0o0ors=b+1,...,a+b—1:

T IOg |‘Zl$|
nh—>H;o — = < 2b(2r 4+ 1) log(2r + 1) + 2(a — 2rb) log 2, (3.1)

s=0o0ors=b+1,...,a+b—1 and is odd.

Moreover, estimate (3.1) is exact in the case when a is even:

=2b(2r + 1)log(2r + 1) + 2(a — 2rb) log 2,
s=b+1,...,a+b—1 and is odd.

lim
n—oo

log |les|

Proof. Consider decomposition (1.6), where the coefficients can be calculated using
the formulae

1 de—i
Ay i = — —— @ =0,%+1,...,+ =1,2,...,q.
ko (a — j)' dta_] (R(t) (t + k) ) — ) k 07 ) , TN, J y 4y , a

First of all we claim that

((2r 4+ l)n)!%(2n)!"_2’"b
nl2(a+b) ’

max |Ak,a| = |A0,a| = (33)
+n

k=0,%1,...,
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Since |Ag,q| = |A—g,q| for k =0,1,...,n, it is sufficient to show that | A 4| decreases
as k increases from 0 to n. This can be verified directly:

[Aral _ (@r+Dntk)  (n—k+1)*
|[Ak-14a  (2r+1Dn—k+1)>  (n+k)td
(@r+Dn+k)-n—k+1)\" [n—k+1\*"
((%—I—ln—k—l—l) (n—l—k‘)) ( n+k )

(2r + 1)n? —k(k —1) + n(—2rk +2r 4+ 1) b n—(k—1) atb
( (2r +1)n? — ) ( )

1

k(k—l)—l—n(Qrk‘—l— 1) n+k

<1, k=1,.

We now fix an integer k, |k| < n, and denote the logarithmic derivative of
R(@)(t+ k)* by gk (t):

(2r+1)n 1 n 1
t)=5b — = b —
9k (t) — (a+ )E:t i
I=—(2r+1)n I=—n
k I#k
Then for 7 =0,1,2,... the modulus of the quantity
1 digu(t) S b”’f“ (-1
- A — +
1 +1 +1
gt ey h=—@r+1ht(l k) I=n+1 kY
—a Z J+1
l;ék

is bounded above by 2(2rb 4+ a)n (we estimate every summand on the right-hand
side by 1). Using Leibniz’ rule for the differentiation of a product, we obtain that

1 di-t “
Agaj = ] W(gk(t) - R(t)(t + k)*)

t=—k

ST B e A 0) .
m=e ' =k (3.4)

whence

14
| Aja—j] < 2(2rb+a)n - j 2 Z | Ak.am|

2(2rb+a)n - X |Ak.a—ml, j=1,...,a—1. (3.5)

We obtain the following estimate from (3.5) by induction:

i—1 .
| Ak a—j| < (2(2rb + a)n)J | Ak ol j=1,...,a.
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By (3.3), we have

a—1 ((2r + 1)n)12b(2n)1e—270
| Aka—j| < (2(2rb+ a)n) s |

k=0,£1,...,4£n, j=1,...,a.

Combining this with (1.11) and (1.12), we obtain that

a—1 ((2r + 1)n)!12b(2n)le—270

1 a+b—2 2
|As| < 29707220 +1)(2(2rb + a)n) 12(atb) ’ (3.6)

s=0ors=b+1,...,a+b—1.

We obtain the limiting relations (3.1) from (3.6) using Stirling’s formula (2.17) for
I'(z) = (2 — 1)! with positive integers z — oo.

If a is an even integer and j is an even integer such that 0 < j < a, then
formula (3.4) with k£ = 0 implies that |Ag q—;| = |Ao,e]- If a is even and s is odd,
b < s < a+b, then the summands on the right-hand side of (1.11) have the same
sign, whence

| 45| = |Ao.al, s=b+1,...,a+b—1 and is odd.

So we have obtained both upper and lower estimates for the asymptotics of coef-
ficients of linear forms (1.5) for even a using Stirling’s formula. This proves the
limiting relations (3.2) and completes the proof of the proposition.

It turns out that the estimate (3.1) holds for odd values of a as well. The results
obtained in §2 enable us to calculate the asymptotics of the coefficients (1.11) for
odd a. This will occupy the rest of this section.

For positive integers m the following expansion holds in the neighbourhood of

the point ¢t = 0:
sinmt\ 2™ >
( ) =" ame, (3.7)
& l=m

where dl(m), l=m,m+1,..., are real numbers, d%n) =1.

Lemma 3.1. Assume that a is an odd integer. Then the following recurrence
relations hold for the coefficients of the linear form (1.5):

_ _ (@m+b-1) (-1)° /iM+°° sinmt ) 2™
A0 = =G oD m Jog o ) FO

(a—1)/2
(2l)!(2m—|—b— 1! (m) 1 a—1
- dl A21+b7 m:1727"'7 ’
lzzmﬂ @m) (21 b 1) 2 l38)

where M > 0 is an arbitrary real constant.

Proof. If m is a positive integer, then (3.7) implies that the following expansion
holds in the neighbourhood of t = —k € Z:

. 2m . 2m >
sinwt \7" _ (sinm(E+ k) )T 3 dm 2
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Formula (1.6) implies that the following formulae hold in the neighbourhood of
t = —k for the function defined by (1.1):

Aka Aka—l A
R(t) = —* ’ .
O=Grm Y arReT T "

1),

where k = 0,+1,...,4n, and R(t) = O(1) in the neighbourhood of t = —k € Z,
|k| > n. Therefore,

) 0 if |k| > n,
Sinﬂ't m (a—l)/2
Res R(t) ) =
t=— (( m ) ”) ST d™ Apa if [k <n
l=m

for m < a/2 and any integer k. If the closed contour £ goes around the points
0,+£1,...,+n anticlockwise, then

. m (a—1)/2
1 sinmt ) > B b1 DY —1)! (m)
Sy L( - ) R(t)dt = (1) ; md Asivp
(a— 1)/2
1 2m)!(b— ) ' — 1 (m)
= (_l)b ! ( A2m+b + Z d AQH_b s
(2m+b— Rt 2l+b (3.9)

which follows from (1.11) and the relation d™ = 1. We deduce from (3.9) the

following recurrence formulae:

_ _ (2m+b—-1)! (—l)b% sinmt ) >
Azmerb = @m)b-1)! 2ri J.\ = R(t) dt
(a—1)/2

20! (2 D! 1
(21)(;’;+2 1) d\™ gy, m=1,2,...,“2 .
oty @)t 2L+D - 1)) (3.10)
—N +iM Im¢ N +iM
—n n Ret
_NTiMm N —iM

Figure 8
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Now let the contour of integration £ be the rectangle with vertices + N + iM,
where M > 0 is a fixed real constant and N > n is sufficiently large (see Fig. 8).
As N — oo, the following estimates hold on the vertical sides of the rectangle:

sin 7t e™™M
< , R(t) = O(N~?).
<SR =0
Therefore, we have
1 . " 2m
1 (sm7r ) R(t) dt
2mi Jo\ ow
1 iM—N —iM+N it 27
:—(/ —I—/ ><51n7r> R(t)dt+O(N™Y) as N — oo
2mi \JimyN —iM—N m

(3.11)

form =1,2,...,(a—1)/2, where the constant in O(N ~!) depends only on M. Since
the integrand in (3.11) is an odd function (see (1.8)) and the contour £ is symmetric
with respect to 0, it is sufficient to integrate over half the contour and double the
result. Passing to the limit as N — oo, we obtain the recurrence formulae (3.8)
from (3.10), which completes the proof of the lemma.

It follows from Lemma 3.1 that the asymptotic behaviour of the coefficients of
the linear form (1.5) is closely connected with the asymptotics of the integrals

1 iM 400 . " 2m
Kpm = — @m> Rn(t)dt
T

)

i iM —oo
(—1)bn iMoo /gin g\ 2P
- i /zM—oo< m )
o DEt+ @r+ Dn+ DTt —n) P @n)le=>" 19 01
T(t+n+1)atd » ME ST
(3.12)

as n — oo, where we have used formula (2.15). As in § 2, we assume that the cuts
(—o0,n] and [(2r + 1)n, +00) are made in the ¢-plane.

Lemma 3.2 (compare [23], §6.5). For any yo > 0 the asymptotic equality
1
logT'(z) = (z - 5) logz — z +1log vV2m + O(|z| 1) + O(e 27 1m=) (3.13)

holds in the domain Im z > yp.

Proof. The asymptotic relation (2.17) holds in the domain | arg z| < m — €, but the
identity
-
T(2)[(—2) = ———— = i (3.14)

 zsinmz ze~miz(1 — e2miz)




522 W. Zudilin

enables us to write down asymptotics in the quadrant Imz > 0, Rez < 0 as well.
Making the cut (—oo, 0] in the z-plane and fixing principal values of the argument,
we deduce from (2.17) and (3.14) the following relation in this quadrant:

logI'(z) = log(27i) — log z + miz — log(1 — €*™*) — log I'(—z)
1 )
= (log(27r) + i (z + 5) —logz — log(1 — 62”2)>
1
- ((—Z — 5) (logz — mi) + z + log V271 + O(|z|_1)>

1 .
= (z - 5) logz — z +log vV2m + O(|2| ') + log(1 — €*™). (3.15)

Observing that |e=2™%| < ug:=e 2™ < 1 in the domain Imz > yo and combin-
ing (3.15) with the relation |In(1 — )| < C|u|, which holds for |u| < ug with some
constant C' depending only on wug, we complete the proof of formula (3.13).

Lemma 3.3. Let p be a positive real constant. Then the relation

(_1)bn(2\/ﬁ)a—2rb2b

Knm = Knm - p2mpa—1

(1401 + 0(e2mw))

holds for the integrals (3.12) as n — oo, where

5 1 ip+00 —1
Kn,m = Sin2m+b ™T - enf(T)g(T) dT7 m= 1’ 2’ Y - 2’
e

(3.16)

i —00
and the functions f(1), g(T) are defined by (2.12) and (2.13) (see also Remark 2.1).

Proof. The proof repeats the proof of Lemma 2.5 except that we replace the asymp-
totics (2.17) by (3.13) (when integrating over the contour Imt = M = pun, p > 0).

Lemma 3.4. Assume that (2.61) holds for the real root py € (2r + 1,4+00) of the
polynomial (2.21), and assume that

Im| < min{\/§, M} (3.17)

™

for the purely imaginary root n1 € (0,4i00) of minimal absolute value. Then the
following relation holds for integrals (3.16) as n — oo:

% lg(m)] Re f -1
(K (a—1)/2] = |7 (1) [L/220+0-1/271 /2172 e O(m)(l +0(n ))7 (3.18)
- _ om a—1 '
|Knm’L| - |Kn7(a—1)/2| O(e 2 np,), m = 1727"'7 9 - 17

where the constant p is defined by the equality iy = 1.

Proof. By Lemma 2.7, X\ = a+b— 1 in equation (2.22) corresponds to the root
ipe = m of the polynomial (2.21).
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Using the equality

minT _ —minT \ 2m+b
sin?™*t rpr = (L)
24
—1)(a+b)/2 ] at+b—-1 - ]
— Xm( 2a)+b_1i e—ﬂ'z(a+b—1)n7— + Z hsze—wz(a—i-b—QZ—l)nT,
1=1
a—1
=1,2,...
m ) ) ) 2 )
where
1 ifm= 221
Xm = { 2 7
0 otherwise
and Ay, m=1,...,(a—1)/2,1=1,...,a+b— 1 are real coeflicients, we write

the integrals (3.16) as

_ —1)(a+b)/2 atbl
Kn,m = _Xm%Jn,a+b—l + - Z hm,lJn,a+b—21—17
T = (3.19)
a—1
=1,2,...
m ) ) ) 2 )

where

400
T = / U RN Gy dr k= 0,41, e+ b—1).  (3.20)
G p—00

First we shall study the asymptotics of the integral J, q45—1. The path of inte-
gration passes through the saddle point 77 = iu. We claim that z = 0 is a maximum
point of the function

f(@)=Re(f(r) — (a+b— l)mT)|T=x+m' (3.21)
We have
() =Re(f' (1) — (a+b— 1)7ri)|7=w+w =Re f'(x +ip).
Hence, the sole candidates for maximum points of (3.21), besides z = 0, are

x = +xg, where xg + iu is the point of intersection of the ray 7 = = +iu, = > 0,
with the curve Re f’(7) = 0 in the domain Re7 > 0 (see Fig. 4) at which Re f/(7)
changes the sign from + to — (if there is such a point). On the other hand,

f(r) = (a+b— Vit = fo(r) + f'(1)7 — (a+ b— 1)mirT

for the function fo(7) defined in (2.48). By Lemma 2.10 and the inequality
Im f'(z¢ + ip) > 0, we have

F(&x0) = f(wo) = Re fo(wo + in) — pIm f'(zo + ip) + (a+ b — )mp
< Re fo(p1) + (@ +b—1)mp. (3.22)
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The inequality
r(r+1)
%0 +1 <o+ 142, =) 2
rel<m<UEleds o= gmy (3.23)
which follows from (2.61), enables us to obtain an upper estimate for Re fo(u1).
We have

Re fo(p1) < b(2r+1)log((2r+1+¢)e)—(a+b)log((r+1)r) < —(a—2rb) log(r? +r),

since (2r + 1+ €)e < r(r + 1) by (3.23). Continuing estimate (3.22) and using
inequality (3.17), we obtain the inequalities

f(£x0) < —(a — 2rb) log(r? 4+ r) + (a + b)wp
< —(a — 2rb) log(r® +7) + (a + b) log(r® + 1)

=b(2r + 1) log(r® 4 r). (3.24)
To obtain a lower estimate for f (0), we use the inequalities
lipd @r+1)|>2r+1,  |iptl| <[iv3+1]=2.
We have
£(0) = Re fo(ip) > 2(a — 2rb)log2 + 2b(2r 4 1) log(2r + 1) — 2(a + b) log 2
= 2b(2r + 1) log (r + %) > b(2r 4 1) log(r? + 7). (3.25)

Comparing (3.24) with (3.25), we obtain that f(0) > f(4zo). Hence, the saddle
point 7=1ip is a maximum point of the function Re(f(7) — (a + b — 1)7wiT) on the
contour Im7 = p. Therefore, Jy qyp—1 is equal to the contribution of the saddle
point iy = ny:

(27T)1/2g(771) n Re 1)—(a+b—1)miny -1
In,atb—1 = W@ (f(m)—(a+b—1)min )(1 +0(n™t)

_ " Polm) e soion (1 4 o)), (3.26)

TR
and a similar estimate holds for the integral of the modulus of the integrand:

ke : (2m)'2[g(ny)|
e (N =(ab=1)mir) (1) 47 — LenRefo(m)(1 4 O(n™h)).
[ = Tt i o)

(3.27)
For the integrals (3.20) with k£ < a + b — 1 we use the relation

|en(f(7—)—km'7-)g(7_)| — |en(f(7-)—(a+b—1)7ri7-)g(7_)| . e—(a—i—b—l—k)n;t

on the contour Im7 = yx. Combining this with (3.27) and (3.26), we obtain the
inequality

[ Jug] < Cemtbt=bme)p ], k=0,%1,...,%(a+b—1), (3.28)

with some constant C' > 0 that does not depend on n or k. (Inequality (3.28)
is obtained by integration along a finite segment, say [ip — 1,4u + 1], since the
contribution of the integral over the remaining infinite part is exponentially small
compared with the contribution of iu.) Substituting estimates (3.26) and (3.28)
into (3.19), we obtain (3.18), which completes the proof of the lemma.
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Proposition 3.2. Let a,b,r be positive integers, let a,b be odd integers, a > 2rb,
assume that the real root py € (2r + 1,400) of the polynomial (2.21) is such
that (2.61) holds, and assume that (3.17) holds for the purely imaginary root
m € (0, +ico) of minimal absolute value. Then the following asymptotic formula
holds for the coefficients A, of the linear form (1.5):

o log |As| - log 22(a—2rb)|n1 Lo+ 1|b(2r+1)| — 1 + 2r + 1|b(2r+1)

where s =0 ors=b+1,...,a+b—1 and is odd. In the case when s =a+b—1
the upper limit becomes a limit and the inequality becomes an equality.

Proof. The limiting relation

lim log |Aa+b_1|

n—oo

= Re fo(m)

follows from formula (3.8) with m = (a — 1)/2 by Lemmas 3.3 and 3.4. For the
other odd integers s, b < s < a+b—1, estimates (3.29) follow from Lemmas 3.1, 3.3
and 3.4. In the case when s = 0 formula (1.5) implies that

Aol < T+ 3 JAlc(),

s is odd
b<s<a+b
whence -
— log|A
m 28140l axtRe folro), Re fo(m)), (3.30)
n—oo n

where the root 79 of polynomial (2.21) is defined in Proposition 2.3. Lemma 2.10
implies that Re fy(79) < Re fo(p1). The inequality Re fo(u1) < Re fo(n1) (even a
stronger one) was proved in Lemma 3.4. Therefore, the maximum on the right-hand
side of (3.30) is equal to Re fo(n1), which completes the proof of the proposition.

Remark 3.1. Estimate (3.29) is but a slight improvement of (3.1), and will not be
used in the proofs of Theorems 0.3 and 0.4. However, it is quite natural (and could
have been foreseen) that the asymptotics of linear forms and their coefficients is
determined by the values of the same function Re fo(7) at different roots of the
same polynomial (2.21). (In the case when a is an even integer the asymptotics
of the coefficients of the linear form (1.5) is determined by the root 1y = 0 of
polynomial (2.21); see Proposition 3.1.)

8§ 4. Refined estimates for the denominators of linear forms

The asymptotics of the denominators of linear forms (1.2) (as n — oo) obtained
in Lemma 1.4, although somewhat coarse, is sufficient for the proof of Rivoal’s theo-
rem. We shall refine our results on denominators using the following generalization
of Lemma 1.2.
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Lemma 4.1. Assume that for some polynomial P(t), deg P(t) < m(n + 1), the
rational function

P(t)

R(t) = (t+s)t+s+1)--(t+s+n)"

(which may be reducible) satisfies the conditions

DI di

Dy & ez,

G dti —k (4.1)
k=s,s+1,....,84+n, j=01....m—1,

(R(t)(t+Kk)™)

where D, is the least common multiple of the numbers 1,2,...,n. Then
DI qd7
—= —(R(t)(t+k)™) €7, k=s,s+1,...,s+mn, (4.2)
gl ded P

for all non-negative integers j.

Proof. For the integers j = 0,1,...,m — 1, the inclusions (4.2) follow directly
from (4.1). In what follows we consider only the integers j > m.

The rational function R(t) can be decomposed into a sum of partial fractions as
follows:

s+n
Bio B Bim—2  Bim—1
— ) ) ) ) 43
B(?) zz((wrl)mJr(t+l)m—1Jr +(t+l)2+ t+1 ) (4.3)

l=s
where

1 d/

= T (R(t)(t+K)™)

, k=s,s+1,...,s+n, j=0,1,....m—1.
t=—k

By,

Since differentiation is a linear operation and formulae (4.3) and (4.1) hold, it is
sufficient to show that

Di~a i B 1
i (00 <t+l>m—q>t=_k (4.4

q=0,1,...m—1, kI1=0,%+1,...,+n.

Since

B R eeTE
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we have for the integers j > m that

L& ((t + k)m;>

7w =y
:<m(_1)p<m>(q—p)(q—p—l)---(q—p—j+1)
= p J!
x (I —k)P(t+ l)q_p_j>
t=—k
I (M (P—q);
- - -1 P+J< >7J 4.5
im0 ()55 (45)
if I # k and
1 d7 1
——(t+E)"—— ] =0
3 <( +h) (t+l)m—<1>
if [ = k. Since
Di—a _
(Z_TLWEZ and (Z)l)(p j'q)JEZ,
qg=0,1,....m—1, p=0,1,....m, k,1=0,%+1,....,4n, k#I,

the inclusions (4.4) follow from (4.5), which completes the proof of the lemma.

The next lemma strengthens the inclusions (1.17). It will be used in our expo-
sition of the general case.

Lemma 4.2. We denote by £ = &, ,, the set of primes dividing each of the numbers

(m+2ntk)!
(m k) (n£k)2’

Bro= (F®)(t+k)?)|,__, = k=0,+1,...,+n,

where the function F(t) is defined in (1.15). Let

O=I,.= [J[ » (4.6)
peEE
Vm+3n<p<2n
Then
DI dJ
22 (F()(t+ k)?) €z, E=0,+1,...,4n, (4.7)
41 ded P

for all non-negative integers j.

Proof. The fact that II™' By, o € Z, k = 0,+1,...,+n (inclusions (4.7) with j = 0)
follows from the definition of £ and II. Let us verify inclusions (4.7) with j = 1.
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We have
d
By = d—(F(t)(t + k)Q)
t —
m+2n n
1 1 1
k’“( 2 <t+l+t—l> Zt+l>‘
l=m+1 l=—n t=—k
14k
m+2n 1 1 n 1
=B —_ ) =2 —_— k=0,%1,...,%n.
“(z:(l—k l+k> 2 %) T
l=m+1 l=—n (48)
14k
By Lemma 1.3, we have D2, By 1 € Z, k =0,%1, ..., £n. Therefore,
ord,(TT"* Dy, By 1) = ordy (D2, By.1) =0 (4.9)
if p is coprime with II. Now assume that a prime p divides II, whence
ord, IT = 1. (4.10)

For p > v/m + 3n we have ord,,(I+k) < 1, where (I+k) is any denominator in (4.8).
Therefore,

m—+2n n
1 1 1
R R ] — | > -1, =0,%1,...,+n. (4.11
Ordp< 2 (l—k l+k> l;nz—k> k=0 n (411)
1k

l=m+1
We have
ord, Doy, 21 (4.12)
for p < 2n. Finally,
ord, B o > 1, k=0,%+1,...,+n, (4.13)
ifpef.
Combining estimates (4.10)—(4.13) and taking (4.8) into account in the case
when p divides II, we obtain that
ord,(TT™' Dy, By 1) > 0. (4.14)

By (4.9) and (4.14), we have II"'Dy, By 1 € Z, k = 0,=+1,...,+n, which proves
that (4.7) holds for j = 1. In the case when j > 2 it remains to use Lemma 4.1
with m = 2.

Note that under the assumptions of Lemma 4.2 we have

2 k k
ord, By = V“r niEJ—{Ei—J—2{Qi—J, k=0,£1,...,4n, (4.15)
p p p p p p
for any prime p > v/m + 3n, since

where | - | stands for the integer part of a number. Formula (4.15) enables us to
calculate the asymptotics of the factor (4.6) as n, m — oo, since

(pe&:p>vm+tin}= {p >vmF3n: _ min _{ord, Buo} > 1}. (4.17)

) EERRT)

Consider, for example, the simplest version of (1.15) with m = n.
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Lemma 4.3.

o1 = lim 08Mnn _ w(%) - w(%) + (1) —1/)(?) —1~0.4820, (4.18)

n—oo n 6

where (x) =T (x)/T(x) is the logarithmic derivative of the gamma function.
Proof. In the case when m = n and p > 2/n, formula (4.15) implies that

n k
i B, = i E— 4.19
k=o,rf11fl...¢n{ordp 0} /ol <l /ol (p ’ p)’ (4.19)
where
p1(z,y) = B3z +y] + [3z —y] =3z +y] -3z —y]. (4.20)

It is obvious that the function (4.20) is periodic (with period 1) in each argument:

pr(z,y) = pr({a} {y}),  {e} == —[z].

Therefore, it is sufficient to calculate the values of this function inside the unit
square. By the definition of the integer part of a number, the summands on the
right-hand side of (4.20) change their values only when the point passes through
the lines 3z £y = const € Z and z +y = const € Z (see Fig. 9). This enables us to
obtain the values of ¢;(x,y) shown in Fig. 10.

u 1
|
|
|
|
|
|

e —————
<)

(N

W=
wn
W=

Figure 9. The values of the functions |3z + y]|, [3z — y] and
—3(lz +y] + |z — y]) inside the unit square

y
0 4 |
1\ % /s l
3 1/ |
|
2§ 4 o ¥ 2|
|
3 1
1 3 |
2 |
0 4 |z
0 111 L 2385 1
6 4 3 2 346

Figure 10. The values of the function ¢j(z,y) inside the unit square
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Consider the perpendiculars to the z-axis passing through the points of inter-
section of the lines shown in Fig. 10. We have

11 5
) . 1 if{.II}EE1:|:—,_>U|:_7 )7
min pi(zy) = min g1({z}y) = 372 6 (4.21)
vIs SYS 0 otherwise.

Formulae (4.17), (4.19) and (4.21) imply that

{p€&inip>2vn}= {p>2\/ﬁ: {g} EEl},
whence

.= J] »r= ]I p/ I » (4.22)
2n<p<L3n

p:{n/p}EEr p{n/p}EEL
2/n<p<2n p>2y/n

We have the following formula for the denominator of the fraction on the right-hand

side of (4.22): 5
II »= D—?’“. (4.23)
2n<p<3n 2n

We can find asymptotics of the numerator using following lemma (cf. [25], Theo-
rem 4.3 and §6, and [26], Lemma 3.2).

Lemma 4.4. The limiting relation

.1
Jim = Y7 dogp = 9(v) — ()
p>v/Cn
{n/p}€lu,v)
holds for any C > 1 and any interval [u,v) C (0,1).

Using Lemma 4.4 and relations (4.22), (4.23) and (1.24), we obtain the desired
asymptotics (4.18), which completes the proof of Lemma 4.3.

Remark 4.1. Simple as it is, the calculation of (4.21) can be made four times simpler.
It is easy to verify that function (4.20) is not only periodic, but invariant under the
transformations

1

Y1 (z,y) — (m—l—%,y—l— 5), Yot (z,y) — (2,1 —y) (4.24)

(in the last map we use the shift by 1 and the fact that ¢1(z,y) is odd with respect
to y). Therefore, it is sufficient to find the values of the function (4.20) on the
square 0 < z,y < % and then use the transformations 91, ¢; o ¥ and ¥ to extend
this function to the unit square and so by periodicity to the whole of R2.

The next object of our study is the rational function

(t:l:(n+1))---(t:|:(n—|—2rn))'

G(t) = Gp(t) == (4.25)
" (tt+1)---(t+n))™
Lemma 1.3 and the Leibniz rule for differentiating a product imply that
D}, d - ,
j—'@(a(t)(wrk) ) €Z, k=0,%£1,...,4n, j=0,1,2,.... (4.26)
: t=—k
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Lemma 4.5. For every integer v > 1 there is a sequence of integers 11, = H(T) >1,
n=12,..., such that

Dl @i
—1 2n _
TR} €Z, k=0,+1,...,+n, (4.27)

t=—k

(G(t)(t+ k)*")

for all non-negative integers j, and

. logH(’") ! 1
== Jim 5 =23 (u(5) +4(5)) - 0 g -

(4.28)

where v = 0.57712 is Euler’s constant.

Proof. For n < 2r we put II,, = 1. Then the inclusions (4.27) follow from (4.26).
This finite part of the sequence has no influence on the limit (4.28). In what follows
we assume that n > 2r.

For every prime p we consider the quantity

2r+n+ k) ((2r+1)n—k)!
{ordp (( o k)!27“+1((r(z Sy } (4.29)

l/p = mln
k=0,£1,....£n

Put
I, = 11 P (4.30)
piy/ (2r+2)n<p<2n

We fix an integer k in the interval |k| < n and consider the function
Gr(t) == G(t)(t + k)*". (4.31)
We claim that

_ D_%n dIGr(t)
Tl dts

€Z, j=0,1,2,.... (4.32)
t=—k

By Lemma 4.1, it is sufficient to prove the inclusions (4.32) for j < 2r.
If p is a prime that does not divide II,,, then (4.26) implies that
dIGr(t)

Dl D dIG(t)
-1 Yoy _ Yoan
ord,, (Hn j—' T t=_k> = ord, ( i T

Now assume that p is a prime dividing II,. We shall prove by induction on
7=0,1,...,2r that

t:—k) >0,  (4.33)

D diG(t)
-1
ord, (H“ j—'n dts
For j = 0 relation (4.34) follows from the definition of II,,, since

(2r+1n+ k) (@2r+1)n—k)!
O = (n+ k)12 (n — )12r 1

t:—k) > 0. (4.34)
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We claim that (4.34) holds for j + 1 if it holds for all preceding j. We shall use the
following notation for the logarithmic derivative of the function (4.31):

(2r+1)n

g=CG0 _ U5 Ly L
Gr(t) = (i 1)n t+1 = e
Ik Ik
We have
1 e 1
Grol ot G am @060)

1 J 1 dj_mgk (t) 1 d™Gy (t)
= " A — . 4.
i+l mzo Goml i mlam (439

We also have

1
d, —— =0, 4.36
or pj 1 ( )

since p > 1/(2r +2)n > 2r + 1 > j + 1. Further, we have

j—m)! dti-m

(2r+1)n i n -

(1 (1)

= OI'd Y T — 27“ =+ 1 T

(2, e & g
I#k I#£k

>—(G-m+1) (4.37)

for m < j, since p > /(2r+2)n and |l — k| < (2r + 2)n for all denominators
in (4.37). The inequality

ord, D" > —m 1 (4.38)
holds, since p < 2n. Finally,

DI dmGL(t)
1 “2n k
Ordp (Hn W 7dtm

by the induction hypothesis. Substituting ¢ = —k into (4.35) and using esti-
mates (4.36)—(4.39), we obtain that relation (4.34) holds for j 4+ 1. This completes
the justification of the induction step.

Combining estimates (4.33) for p { II,, and (4.34) for p | II,,, we obtain that the
inclusions (4.32) and (4.27) hold for j = 0,1,...,2r. Therefore, they hold for all
non-negative integers j. We claim that the limiting relation (4.28) holds for the II,,,
n=12....

t:—k) >0 (4.39)
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By (4.29) and (4.16),
. n k
P plSingl (5’ 5) (4.40)
for every integer n > 2r and prime p > \/m, where the function
or(z,y) = [Qr+)z+yl+[Q2r+1)z—y| - Q2r+1)[z+y] - (2r+1)|z—y| (441)
is periodic (with period 1) in each argument. We claim that
I;?éiﬂg(p,«(m,y) =v if{z}€E,, v=0,1,...,2r—1, (4.42)

where

I 141 1 11 I+41
Eoy = | — — — 44— =0,1,...,r—1
2 [2r’2r+1>u[2+2r’2+2r+1>’ b=0,1,...or =1,

I 1 o1
Eypq1=|— —Julog—_ 24> 1=1.2,.. .
A1 [2r+1’2r> [2+2r+1’2+2r>’ 7 &rec T

Taking into account that (4.41) is an odd function, we can easily show that this
function is invariant under the transformations (4.24). Hence, relations (4.42) will
be proved if we prove them in the domain 0 < z,y < % In this domain

oJun or(z,y) = min on(z,y) = min ([(2r + Dz +y) + [(2r + D —y)),

0<y<

since

GroDlety @ ine-y={  °
—Zr+1)xe+tyl —Lr+1)z—y| =

Y Y {2r+1 ifo<z<y<i.

To complete the proof of relations (4.42), it remains to calculate the values of
the function |(2r + 1)z +y] + [(2r + 1)z — y] in the domain 0 < y < = < § (see
Fig. 11) using arguments similar to those used in the proof of Lemma 4.3.

<y<z<i,
<

1---—-——————-F—-————-————7—--———

2141

//
, 2-1

8

0 i
2r+1

|~._______________

N —r—————— e —— Y

N
]
N
~5
+
[uny

Figure 11. The values of the function ¢r(z,y) in the domain 0 <y < z < %
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y (4.30), (4.40) and (4.42), (4.43), we have

2r—1

o1 11 »

v=l p{n/p}eE,

V/(@ri2)n<p<an

2r—1 r—1

(T m o»)/(m 1

v=1l p:{n/p}eE, =1 2ol p<p<2rn =1 2ep<p

p>+/(2r+2)n
To obtain the limiting relation (4.28), we use Lemma 4.4, the identity

<
N
M
S
3}—‘
hS
I
|
—
N——

1
P(x) + (m + 5) = —2log2 + 2¢(2x)
(see formula (4.47) below with r» = 2) and the relation

1
lim — E logp =0 —q, where a < 3,
n—oo N
an<p<fn

which follows from the prime number theorem (the asymptotic law of distribution
of primes). We have

oo () (m) o (ra) ()
- 2_7~_2r+1
<211 >l> — # l L — l ;
o0 (o) ~v(551) o Gra) (G ae)
(27‘1—!—1_277“ )
~2x(o(555m) (1)) 2 0(+(5) ()

:22¢<i>(21—1—2l+4w +2Zw< +1/2> 2(1—1) — (20 - 1))

=1

—Z (4rl—2(1—1)(2r + 1)+ (21— 1)) + 4r

() ()

=1

Since ¢ (1) = —v (see, for example, [27], §1.1, formula (8)), we obtain the desired
result, which completes the proof of the lemma.
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Lemma 4.6. The following estimates hold for the quantity defined by (4.28):
1
—log(r+1)—4<w, —4r+ (4r+ 1)y < log(r + 1) + = +2. (4.44)

In particular,
w, = 4r(1 —v) + O(logr) as T — 0o. (4.45)

Proof. Since v(x) is monotonically increasing on (0, 1], we have

r4+1 r
l
- . 4.4

w0+ 3wy ) <o) <oe(r) e
We can calculate the sums in the upper and lower estimates using the formula
. -1
Z P (m + —) = —rlogr + r(rz) (4.47)
T
1=1

(see, for example, [27], § 1.1, formula (6)).
Inequality (2.28) implies that the sequence

1+1+1+ +1 1
— — PRy _—O/"‘
2 3 r &

decreases and the sequence

1 1 1
lfodod o d—1 1
+2+3+ +r og(r+1)

increases. Therefore, their common limit v lies between the elements of these
sequences, that is,

T
1
logr < Z 777 <log(r +1). (4.48)
=1

Substituting estimates (4.46)—(4.48) into (4.28), we obtain that

1
—log(r—l—l)<w,«—4r+(4r—|—l)'y<(2r+l)logr+

1
—4rlog rt + log(r + 1).

Using inequality (2.28) once again, we complete the proof of estimates (4.44). The
limiting relation (4.45) follows immediately from (4.44). The lemma is proved.

Proposition 4.1. The denominator den(I,) of the linear form (1.5) divides
H;ng;fb_l, where the sequence of integers 11, = Hg), n =12 ..., is defined
i Lemma 4.5. Hence,

— 1 I log DS~ — blogIl,
T ogden(I,) < lim og D3 blog

n—00 n n—00 n

=2(a+b—1) — bw,.
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Proof. We prove this proposition by replacing (1.22) in the proof of Lemma 1.4 by
the representation
R(t) = Hn(t)* "G (t)",

applying Lemmas 1.3 and 4.5 to the functions (1.16) and (4.25), and using the
Leibniz rule for the differentiation of a product.

To conclude this section we give some particular values of (4.28) (for r = 1
see (4.18)):

wo & 2.01561, w3~ 3.64442, w9~ 15.38202, w5y ~ 82.98948,
w100 A~ 1.67541 - 100, w1000 &~ 1.68956 - 1000, w0, ~ 4(1 — v)r ~ 1.69114 r.

§ 5. Proof of the results on linear independence

The following theorem is based on the results obtained in §2 and § 4.

Theorem 5.1. Let the assumptions of Proposition 2.3 hold, let b be an odd integer,
and let
x+2(a+b—-1)—bw, <0,

where

. l l 1
=2 Z —(4r+ 1S 2 = dpy 4
@ ;<w<r>+w<r+l/2>> (4r + );l Ty + 4r
Then at least one of the numbers

¢(b+2), ¢(b+4), ..., lla+b-1) (5.1)

18 irrational.

Proof. By Lemma 1.1, for any integer n > 1 the quantity defined by (1.2) is a
linear form in 1 and the numbers (5.1). Assuming that every number in (5.1)
is rational and denoting their least common denominator by D, we obtain that
Jn = D|I,,| den(I,,) is a positive integer for infinitely many n > 1. This contradicts
the limiting relation

— log J,
1m

n—oo n

<x+2a+b-1)—bw, <0,

which follows from Propositions 2.3 and 4.1.

Proof of Theorem 0.1. We use Theorem 5.1 with suitable a,b and » = 1 for each
set of numbers. Note that p; < 3.05 in each of the cases considered below. Hence,
assumption (2.61) holds.

We prove that at least one of the elements of the first set in (0.1) is irra-
tional by putting @ = 19 and b = 3 in Theorem 5.1. In this case p; ~ 3.04028,
To A= 2.98027 + 0.02985¢, and Im fo(79) + 37 ~ 0.09308 # 0 (mod 7Z). Combining
the estimate

x+2(a+b—1)—bw, = —0.72567 < 0

with Theorem 5.1, we complete the proof of the assertion for the first set in (0.1).
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For the second we put a = 33 and b = 5. Then

w1~ 3.03309, 70 ~ 3.00783 + 0.030463, Im fo(70) + 97 =~ 0.14978,
x+2(a+b—1)—bw, ~ —0.76662 < 0.

Finally, putting a = 47 and b = 7 for the third, we obtain

1~ 3.03043, 7o~ 3.01730 4 0.02406i,  Im fo(r0) + 157 ~ 0.16232,
#+2(a+b—1)— bw, ~ —0.82928 < 0.

The theorem is proved.

Proof of Theorem 0.2. We put a = 7b and » = 1 for every odd integer b > 3
and denote by 7, the root of the corresponding polynomial (2.21) in the domain
Rer > 0, Im7 > 0 with the maximal possible Re,. Note that the root of poly-
nomial (2.21) in the interval (3, +00) coincides with the root of the polynomial

(T+3)(r = 1)° = (1 = 3)(7 +1)%,

which is equal to p; = 3.02472. Since (2.61) holds, Lemma 2.10 implies that
Re fo(m) < Re fo(u1), whence

2292 (11 + 3)%(pg — 3)°

~ —15.564 .
(o + 05(ur — 1° 08T

»x < by :=blog

Therefore,
2+ 2(a+b—1) —bw, < b + 16b — by ~ —0.04701 b < 0.

We shall be able to use Theorem 5.1 if we can show that (2.55) holds. It is easy to
verify that

go(d) =Im fo(m) + 3(b— 2)7
= 3b(arg(m, — 3) + arg(—7, + 3)) — 8b(arg(m, — 1) + arg(n + 1)) + 3(b— 2)7
= 2b(3arg(m, — 3) + 8arg(, — 1) — 16 arg(m + 1)),

regarded as a function of b > 3, increases, whence go(b) > go(3) ~ 0.05935 > 0.
The relations

b—2
arg(—m, +3) ~ R |—76 4+ 3| ~ |1 — 3] as b — oo, b is odd,

enable us to calculate the limit

lim go(b) < .

b—oo
b is odd
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Therefore, Im fo(75) # 0 (mod7Z). An application of Theorem 5.1 completes the
proof.

Proof of Theorem 0.3. By Lemma 1.1 and Proposition 4.1 with b = 1, the I,, (a,r) =

Iann/Hﬁf") defined by (1.2) are linear forms in 1,¢(3),{(5),...,¢(a) with integer
coefficients. By Propositions 2.1, 3.1, and 4.1 the «, § in the criterion for linear
independence (see the introduction) are defined by the formulae

ala,r) = —x(a,r) — 2a + w,,

Bla,r) =2(2r+ 1)log(2r + 1) + 2(a — 2r)log2 + 2a — w,, (5:2)

where » = »(a,r) is defined by (2.59). For a = 145, r = 10 and a = 1971, r = 65
we have

145, 10)
145.10) — 21 ~ 0.38013 - 10~* 1 a(145,10) ~ 2.000397
lul( ) ) ) + (145 10) )
1971, 65)
1971 — 131 ~0.22019- 101 1 (1971, 65) ~ 3.0001
p1(1971,65) — 131 ~ 0.22019- 10717, " (1971, 65) 3.000103,

where p1(a,r) is the real root of polynomial (2.21) with b = 1 in the interval
(2r 4+ 1, +00). The criterion for linear independence implies that

5(145) = 3, 5(1971) > 4, (5.3)

since the dimension of space is an integer. By Apéry’s theorem, §(3) = 2. The
assertion of the theorem follows from the estimates obtained.

Lemma 5.1. Assume that the positive integers a,r are such that
a>2(r+2)log(r+1)+1, (5.4)
and let p1 = pa(a,r) be a real root of the polynomial
h(r) = (t+2r +1)(7 — 1) — (r —2r — 1)(7 + 1)°T! (5.5)
in the interval (2r + 1,400). Then

2r +1

0<pr—(2r+1)<2e where € := e 1 (5.6)
Proof. Direct calculations show that
h(2r +1) = 2°T2(r + 1)r* ™t > 0, (5.7)

h(27ﬂ + 1+ 25) = 2a+2((27“ + 1+ 5)(7“ + g)a"‘l — 5(7“ L1+ E)a-i—l)'
Inequality (5.4) implies that

(r+14+e)*t > (r+e)*t, (5.9)
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since
(a—1)log(r+1+¢€)—(a+1)log(r+e)

1
=(a— 1)10g<1+ r—+5> — 2log(r +¢)

> (a— l)log<1+ %) — 2log(r + 1)

+1
a—1 a—1—2(r+2)log(r+1)
—21 1) = 0.
> g 2leg(r+1) - >
Besides,
2r+ 1)(r+1+¢)?
1 2:(
e(r+1+e¢) 1)
2 1 1 2 3r2 +4 142
>(7“+ Jr+1+e)? e@r®+dr+1+4 5r+e):2r+1+5'
(r+1)2 (r+1)2

(5.10)

Substituting inequalities (5.9) and (5.10) into (5.8), we obtain that h(2r+142¢) <0.
Combining this inequality with (5.7), we obtain that the interval (2r+1, 2r+1+2¢)
contains at least one root of the polynomial (5.5). Now (5.6) follows from the fact
that pq is the unique real root in the interval (2r 4+ 1,4o00) (Lemma 2.7). The
lemma is proved.

Corollary 5.1. Let the assumptions of Lemma 5.1 hold with r > 6. Then the
following estimate holds for » = x(a,r) in (2.59):

x(a,r) < 2(2r 4+ 1)log(2r+1) — 2(a+ 1)(1 + logr).

Proof. Since h(p1) = 0, we have

22((1—27")(”1 49+ 1)2(27"—}-1)(”1 _ 1)2(a+1)r
(Ml + 1)2(a+1)(r+1) :

»x =log

Combining this with (5.6), we obtain that

g —(a—2r)log2

= (2r+1)10g(1+ —

2
—(a+1rlog| 1+
Ml—l-l) ( ) g( 251

) - (@20 togtun + 1)

r (a+1)r
— — (a — 27) log(2 2
<(2r+1)log<1+r+1> 1 (a —2r)log(2r +2)

=(2r+1)log2r+1)—(a+1) (70_7':—1 + log(r + 1)) —(a—2r)log2

<(2r+1)log(2r+1)—(a+1)(1+1logr) — (a —2r)log?2.
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Here we have used the inequality

2 1 1 1
log| 1 >1 1+——) >2log|1 >
Og( +u1—1> Og( +r—|—5> Og( +2r—|—1> Pt

(see also (2.28) with n = 2r + 1), which holds for » > 6 since

1 2 r—4er —3r+1
— 1+ —
r+e 2r+1 (r+e)2r+1)2
3 —5r2 —7r—2

= if .
B e S A

The corollary is proved.

1+

Proof of Theorem 0.4. Since 6(a) is an integer and
0.395 - log 3 =~ 0.43395, 0.395-log 145 ~ 1.96581, 0.395-log 1971 ~ 2.99659,

Apéry’s theorem and estimates (5.3) imply that inequality (0.2) holds for all odd
integers a < e*/9-39 that is, a < 24999. In fact we shall show that the following
estimate holds for odd integers a > 20737 = 12% + 1, which is stronger than (0.2):

loga
) — 5.11
(@) > (g 12 (5.11)
or, which is the same,
5(12™ +1) >m, m=4,5,6,.... (5.12)

For every a = 12™ 4 1 we put

|log’12  a | |12m+1
L3 logia] | 3m?

J, m=4,56,...,

and obtain a lower estimate for §(a) using the criterion for linear independence,
formulae (5.2), and the inequalities in Lemma 4.6 and Corollary 5.1:

ala,r)

- 2(a+1)(1 +1logr) +2(a — 2r)log2
2(2r +1)log(2r +1) + 2(a — 2r)log2 4+ 2a — 4r(1 — v) + log(r + 1) +4 + v
(5.13)

Now for m = 4, 5,6, 7 estimate (5.12) follows immediately from (5.13):

a
m a=12"+1 r= {—SmQJ d(a)
4 20737 432 > 4.00882
5 248833 3317 > 5.15339
6 2985985 27648 > 6.35168
7 35831809 243753 > 7.58967
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For the remaining values of m we combine (5.13) with the trivial estimates

0<7“< 1 27“—|—l<2+1< 2
a  3m?’ a 3m2 a  m2logl2’
m

12
logr > log4—2 =mlogl12 — 2log2 — 2logm,
m

log(2r +1) < log(a — 1) = mlog12.

We have

J(a) = 6(12+1) >

No

mlog12 —2logm + 1 —log2 —1/(3m?) _ mlog12 —2logm
1+log2+42/m 1+log2+42/m

w (5.12) with m > 8 follows from the fact that the function

2
A(m) = (mlog12 — 2logm) —m<1+log2+ E) =m(log6 — 1) — 2logm — 2

increases monotonically and takes a positive value, A(8) ~ 0.17519, at m = 8. This
completes the proof of the theorem.

In fact we have proved estimate (5.11) for odd integers a > 3 with the exception
of finitely many values in the range 123 + 1 = 1729 < a < 1969.
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