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IRRATIONALITY PROOFS USING MODULAR FORMS

by 'F.Beukers

0. INTRODUCTION

In the years following Apéry's discovery of his irrationality proofs
for ¢(2), z(3) (see [P1l), it has become clear that these proofs do not
only have significance as irrationality proofs, but the numbers that
occur in them éerve as interesting examples for several-phenoména’in
algebraic geometry and modular form theory. See [Ge][Bel,2][SB] for
congruences of the Ap&ry numbers and [Be2,3][BP] for geometrical and
modula: interpretations. Furthermore, it turns out that Apéry's proofs -
themselves are in fact simple consequences of elementary complex ana-
lysis on spaces of certain modular forms. In the present paper we des-
cribe this analysis together with some generalisations in. Theorems 1
to 5. For example, we prove that 8;(3)-5/5L(3)/@(/5), where L(3)=

I: (g)n—3. Although the use of modular forms in irrat;onality proofs
looks promising at first sight, the yield of new irrationality results
thus far is disappointingly low. However, in methods such as this it
is easy to overlook some simple tricks that may give new interesting
results. . } ]

The first section of this paper describes the general framework
of the proofs. This section may seem vague at first sight,'but in com-
bination with the proof of Theorem 1 we hope that things will be clear.
We have given the proof of Theorem 1 as extensively as possible 1n order
to set it as an example for the other proofs, where we omit some mi-

nor details now and then,

1. PRELIMINARIES

¢

In this section we shall describe the general principles whic¢h are

used in the arguments of the following sections.
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F. BEUKERS

Let t(q) = E:tnqn be a powerseries convergent for all |g|<l. Let
w(g) be another analytic function on |g|<l. We like to study w as
function of t. In general it will be a multivalued function over which
we have no control. However, we shall introduce some assumptions.
First, t0=0, tl#O. Let now qg(t) be the local inverse of t(g) with
q(0)=0. Choose w(g(t)) for the value of w around t=0. In order to de-
termine the radius of C6nvergence of the powerseries'w(q(t))=2§ wntn
we introduce branching values of t. We say that t branches above tO'
if either t0
with t(q0)=t0.In other words, t branches above to, i1f the map t:

is not in the image of t, or if t‘(q0)=0 for some 4,

{|a]<1}> © is not a local covering above ty. We call such a t; a
branching value of t. Now assume, that t has a discrete set of bran-
ching values tl't2"" where we have excluded zZzero as a possible value
<... . It 1s clear now that the radius of con-

and suppose [t |<|t,

vergence is in general |t We shall be interested in cases where

1l

the radius of convergence is larger than |tl . Let y be a closed con-

tour in the com?lex t—plahe beginning and ending at the origin, not

passing through any ty and which encircles the'point t, exactly once.

s 1 v
Suppose that analytic continuation of w{(g(t)) along y again yields
the same branch of w(g(t)). Then w(g(t)) can be continued analytical-

"ly to the disc |t|<|t2|

gularity tl.:If w(g(t)) remains bounded around tl we can conclude

with exceéption of the possible isolated sin-

that the radius of convergence is at least |t2|. Our irrationality
proofs consist exactly of the construction of such instances. The
point of having a radius of convergence as large as possible consists

of the following Proposition.

PROPOSITION 1.1. Let‘fo(t),fl(t),...,fk(t) be ngerseries in t. Sup-
pose that for any ne N, i=0,1,...,k the n—-th coefficient in the Tay-
lorseries of fi 18 rational and has denominator dividing dntl,...,n]r

where r,d are certain fixed gﬁsitive integers and [1,..,nl is the

lowest common multiple of 1,...,n. 8uppose there exist real numbers
61'92""’ek such that fd(t)+elfl(t)+62f2(t)+i..+ekfk(t) has radius
of convergence p and infinitely many nonzero Taylor coefficients. If

p>der, then at least one of el,..,ek is irrational.

REMARK. Note that 1f k=1 we have an honest irrationality proof.
8

r{l+e) n

PROOF. Choose e>0 such that p-e>de Let £ (t) = EZaint Since

the radius of convergence of fo(t)+elf1‘t)+“'+ekfk(t)‘is p, we have
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-n
for sufficiently large n, |a, +a, 6,+...+a, 6, |<(p=¢) . Suppose o

...,ek are all rational and have common denominator D. Then A =
=Dd [l,...,n] |a a;,0,%

pa” [l,...,n] (p- e) “. By the prime number theorem we have
) (1+e)n

l'
...*a, 6, | is an integer smaller than

(l,...,nlc<e for sufficiently large n, hence iAd|<

(1+e)r _ r(l+e) -t _
<D(de!” """/ (p e Since de (o <l this implies that A =0 for
sufficiently large n, in contradiction with our asaumption An#O for
infinitely many n. Thus our Proposition follows. Q.E.D

The construction of the functions t(gq) and w(g) will proceed using
modular forms and functions. The values for which we obtain irratio-
nality results are in fact values at integral points of,Dirichlet se-

ries associated to modular forms.- ‘

PROPOSITION 1.2. Let F(r1) z a q ’ q=e2”11be a Fourier series con-

vergent for |a| <1, such that for some k NcZN,-

. © F(-1/80) ;=  e(-1t/N) P (1),

where e=t1. Let f(x) be the Fourier series

n
- q" .
nkl o
Let ) - a
L(F,8) = 2 _n .
ln
and finally, " =
h(t) = £(r) - E E—(E-L§;£:£—)-(2ﬂi'r)r -
Then Osr< (k-2) )
h(:) - D = (-1 K e (c1ev K7 2n (-1 /80)

where D=0 if k is odd and D = L(F, &k)(Zvir)kk 1/(‘:k 1)! if k is even.
Moreover, L(F,kk)=0 if e=-1l. -

PROOF. We apply a lemma of Hecke, see [W section 5] with
G(r) = €F(r)/(i/N) to obtain
R R : k=2
£(0) - (-1 (cir) X 26 (c1/n0) = Y EifﬁE—E—l)(z 1T
Split the summation on the right hand side into summations over
r<k¥k-1, r>kk-1 and, possibly, r=%k-1. For the region r>kk-1 we apply

the functional equation
L(F,k-r-1) k-2 1, k-r-2 k-2r-2 L(F,r+l)
_._J_______ - =
e (- l) (-1/N) ( N) (2wi) Ti:é:iTT
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and substitute r by k-2-r..
2. THE GROUP rl(G)

This group is exactly the subgroup of SL(2,Z) of all matrices (c d)
with ‘azdz1(mod §), c=0{mod '6). Its fundamental domain can be pictured
as below. A complete set of inequivalent cusps is given by 0,1/2,1/3,«,
B They are regular and have widths 6,
k;;// . © 3,2,) respectively. Consider the

following function,

y(T) = |(6T)8 (T)4
N . r'|'(2‘\r)6n('3'|:)'4
wWhere- L. N
ni(t) = ql/24 ?(l-qn)
v N . '  q=e?™T  Imeso.

That 1t ig a modular function on r; (6) can be checked using the trans-
formation formula for n(t) in [Ra, Ch9] Since vy (1) has only one simple
zero in the fundamental domain it -generates the field of modular
functions on r1(6) Moreover, y(0)=1/9, y(1/3)=1, y(1/2)=w, y(w)=0

The function y(-1/61) is again invariant on ry (6) and one easily

checks that o £)~1/9
(1) y(-1/67) = %YTFlL i

Hence the function
- l 9y (1)
- t(r) y(r)——:%T?T

is 1nvariant under the involution f441/6r . Moreover,

/8 (67) (1) 6n+1,12,, 6n+5, -12

t(t) = (—73?7273;—>% qn(l -q -l (1-g )
which 18 checked by noticing that (A(Gr)A(r)/A(3r)A(2r))k is modular
with respect to r1(6), invariant undeg 1>=-1/61t and its zeros.and
poles coincide with those of t(t).

PROPOSITION 2.1. The function t(m)'maﬁs the shaded open area in the
picture below univalently onto the’ﬁppér half plane and satisfies

t(=) = 0, t(1//6) = (/2-1)*, t(2/5+1/5/6) = (Y2+1)*, £(k) = =,
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L
e
¢
. ¥
Ti= 72
8 ”“\\,:,/—‘ ‘ = ——
| Y N ‘)’ {C(Lu) t(‘-LT) f(}-r #7)
%o~y ° " Y,

PROOF. That t(%#«)=0, t(%¥)=e can be seen from the values y(l=)=0, y(¥%)=
. From (1) it follows that for t=1/v6 and yo—y(i//G) we have
Yo = 1/9)/(y0-1), hence Yo = "1+2/2/3 and correspondingly, t(1/7/6)=
(/2+1) . The same principle can be applied to obtain t(2/5+1/5/6) =
/2+1) . To decide which sign should be taken, onevestimates t(;//s)
and t(2/5+1/5v6) numericélly and obtéin the values of our Proposition.
Fhrthermore,'t(r) assumeé every value at most once in the union of I
and II. Finally, t(1) is real on the boundary of I. Our Proposition
now follows. ) )
- - Q.E.D.

In the theorems and proofs that follow we let M, (T, (6)) be the space
of modular forms of weight k with respect to r,(6), and let

E (1) = 14240 Jo,(nlq" , E,(t) = 1-24 Jo(n)q"
: Sl |
be the standard Eisenstein series. -

THEOREM 1, ¢ (3) is irrational.

i

PROOF. Let

40F (1) = E4(r)-36E4(36T)-7(4E4(21)-9E4(31))

24E(7) = -5(E, <T);es-613)+zs (21)=3E, (37)

N

Notice that F(t)eM (F (6)) and F(- 1/61)——361 F(r), F(ie)=0 and
E(r)eM,(r,(6)), E{- 1/61)=—61 E(r) The Dirichlet series corresponding
to F(r) reads

- 663(n) 6oy (n) 605 (n) 654 (n)
L(F,s) = § ——— '~ 36 - 28 + 63
1 n® (6n)° (2n)% (3n) %
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2-s 2-s

=6(1-6 -7.2 +7-32's)c(S);(s—3)

Define £(1) by (&)3f(r) = (2r1)3F(r) , £(1=)=0. From Proposition 1.2
and the fact that F(-1/6t)=-361°F(t) follows

612 (£(-1/61)~LI(F,3))= = (£(7)-L(F,s))

and since L(F,3)=6-(-1/3)z(3)z(0)=5(3), we have
2(£(-1/67)-5(3)) = —(£(t)-2(3)).
Multiplication with E(-1/6t)=-61%E(r) yields

(2) E(-1/67) (f(=1/61t)-¢(3)) = E(1)(£{(t)-¢(3))

The function E(r)(f(t)—c(3)) can be considered as a multivalued
function of t=t(T).TWe choose it at t=0 as follows.From the expansion
t=qr[°;(1-c16n+l)1‘2(1—':1611-"5)-12 = q—12q2+66q3—220q4+495q5—... one infers
the inverse expansion q=t+12t2+222t3+..; . Then, from E(T)=l+5q+13q2+

. one finds E(t)=1+5t+73t2+1445t3+... and similarly, E(t)£(t) =
= 6t+( 351/4)t +. .

By construction one notes that E(t)s Z[tJand E(t)f( t)—{ a, £

where a, e Z/[l,...,n] Since the inverse function t-»t branches at

t=(v2- l) one expects the radius of convergence of E(t)(£f(t)-z(3))
to be (/2= 1)4. However, by the property (2), the function t-»
E(t) (£(t)=-z(3))  has no branch point at t=(v/2- 1) , and 1its radius of
convergence equals at least the next branching value, which is (/2+1)
Furthermoreé, it cannot be a polynomial in t, since then f£(t1)-g(3)
would be a modular form of weight -2, which is impossible. We now
apply Proposition 1.1 with-ﬂl=;(3) to conclude z(3)£Q.

. Q.E.D.
REMARK. Note that 1,5,73,1445,... are exactly Apé&ry's numbers for §(3).
)

THEOREM 2. Let F(t)=n(t) n(2r) n(3r) n(GT) and L(F,s) the correspon-
ding;Dirichlet series. Then at least one of the numbers L(F,Z) and
L(F,3)+(47L(F,2)z(3) /48n ) 1s irrational.

1

PROOF . The function F(t) 1is 1n M (r (6)), it is a cusp form, and
F(- l/6r) 361 F(r) Let f(1) be the Fourier series such that ( ) f(r)=
=(2m1i) F(r), f(iw)*O. Then it follows from Proposition 1.2 that
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(3)  6t2(£(~1/67)- L(F,3)) = £(r)-L(F,3)-L(F,2)2nit.

Consider also

240G (1) = 13(B,(7)+36E,(61))=37 (4B, (21)49E, (31)) .

It has the properties G(i=)=0, G(- 1/61)=361 G(r). The corresponding
Dirichlet series reads,

. 2-B

L(G,s) = (13+13-6 —37-22'5437452‘5)c(s)c(s—3)

Letting (é%)3g(r) = (271)3G (1), g(i=)=0, we have

% (g(~1/67)-L(G,3)) = g(t)-L(G,3)-L(G,2)2nir ,
hence,
(4)  6:2(g(-1/61)-%e(3)1) = g(0)-Fe(3)+48g(2) 2mix .

Elimination of 2rir from (3) and (4) gives that the function h(t)=
483(2) (£(x)=L(F,3))+L(F,2) (g (1) 7;5(3)) betiaves like 61ni(- -L/60)=h ().
Now consider - :

. E() = E, (r) 2E (21)+6E (67)= 3E2(31)

It is in Mz(rl(G)) and we havg»E(-l/Gr)BGT E(r) Consequently,
E(-1/61)h(-1/61)=E(t)h(tr) and by an argument similar to the one in
Theorem 1 we find that

- 487 (2)E (£)E(£)+L(F,2)g (£)E (£) - (48c (2)L(F,3)+L(F, 205 (3))1E(e)
is a power series in t with radius of convergence (/2+l)4. Again the
denominator of the n-th coefficient in the powerseries of E(t)f(t),
E(t)g(t) ,E(t) &ivides.[lr...,n]3.. e can now apply Proposikion 1.1 .
to obtain our Theorem. : )

N

. Q.E.D.
THEOREM 3. Let . o

o . 9 9 R ® - 3n,9/2

nzlanqn': (ﬂjillﬂ—§§31—) =q 1 (-gM3a-¢*h3 Lliﬂ__%77_

n~(21)n” (31) n=1 (l+q‘)

)

Then_Zian/n2 is irrational.

PROOF.Consider the .product n‘. -

' E(T) = '] (2T)n (31)

n (T)n (67)
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We have E(-1/61)=-612E(:) and hence /E(—l/ﬁr)=i(—ir/6)/E(T). Since

E(tr) has only zeros and poles in the cusps, 1t can be well-defined

on the upper half plane. Since E(1//6)#0, we should have /VE(-1/61)=
-11/6/YE(1) . Now consider

F(t) ﬂ_illﬂ_iﬁil_ YE(1)
n (21)n (371)

which obeys F(-l/61)=(-ir/6)_F(r). Let f(r) be defined by (é%)zf(r)=
=(271) °F (1), £(iw)=0. Then

~11/6(£(~1/67)-L(F,2)) = £(1)=L(F,2).

Multiplication with YE(-1/61)=-i{/6/E(z) ylelds,

YE(-1/61) (£(1)~L(F,2)) = VE(1) (£(1)~L(F,2))

Notice that VYE(t) considered as a function of t is a power series
whose nth coefficient is»rational and has denominator dividing 4", The
denominator of the nth coefficient of E(t)£(t) divides 4“[1,...,n]2.
By the same argument as 1in tﬁe previous Theorems, the radius of con-
vergence of YE(t) (f(t)-L(F,2)) is (/2+1)4. Since 4e<(/2+1]4, we can
apply Proposition 1.1 to find our Thedrem.
: ' Q.E.D.
REMARK. Theorem 3 is the one alluded to in [Be2] .

-

3.THE GROUP Fl(S)

The fundamental domain of the group’rl(5)={(2 g) SL(2,XZ)|azd=1(mod 5),
cz0(mod 5)} can be pictured as below. The cusps are given by 0,1/2,
2/5,ix. They are regular and have widths 5,5,1,1 respectively. Con-
' ‘sider the following function,

g = a1 (1-gM5E

) > n=1 .
where (%) i1s the Legendre symbol.
The function y(t) is a hauptmodul
for the group 'y (5) .Moreover,

y(o)————-+2/5 y(2/5)=e, y(1/2)=
%%"2/5, v (iw)=0. The function

y(-1/5T) is again modular with res-

pect to rl(S) and one easily checks
that ’
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Ay
' = 17 R 5 -]
y(-1/51) = T,y A= +2/5 .

So the function
: A -y(r)

t(r) = y(r)*;x—§7;—

is8 invariant under the involution t+~1/51. In a similar way as in Pro-

position 2.1 one shows,

PROPOSITION 3.1 The function t(r) maps the shaded open area in the pic-—
ture below univalently onto the upper half plane and satisfies

E(i=)=0  t(1/V5)=(a, 4 10502 t(dgrm)=(1,= 102 £(1/2)==

where A 11 /5 .

S'
N ¥ ) T {:(m) t( _i_ .‘L+ ___
VF

We also consider the function

Ay—y (1) '
2 11 _ 5
8(r) = y(Igtey » 777 720

LEMMMA 3.2 The branchin values of B(r), as defined in section 1, read
0,= and (A, + 1+>.l)2 where 2 _-__+._/5

1 2

PROOF. The branching values of s(r) are the values of s(r) at the
cusps or the values at the points t, Imtr>0 where s'(t)=0. The values

at the cusps are 0,~. Notice that

s’ = (14X - y )x_ y +(1l 5/5)y-1 y'
s YAy ¥YTMTY y2+11y-1 Y

The function y'/y can only be zero at the cusps 0,1/2. If
y +(11 5/5)y-1=0, then Y=x; +/T:;! which implies s=() +/I:;7)
QED.
Notice that the g-expansions of t(r), s(1) read

t(t) = ETanqn s(t) = Zjbnqn
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where an’bn are algebraic integers in @(Y5). From the construction fol-

lows that for every n the numbers‘an.,bn are conjugates.

THEOREM 4. Let L(3,x)=27(%)n_3, where é%)'is the Legendre symbol. Then
8z(3)-5v5L(3,x) is not in @(V5).

PROOF. Consider the weight 4 form on Fl(S) given by

24F (1) = E4(T)-25E4(51)+ 24(E, (x,1)=5/5F 4 (x, 1))

where
E,(x,1) = 1+Z (& L—Ji—
® 1= q
F,(x,1) = (—)m g™
4 m,£=l >

Note that'up to a constant factor,F(t) is chaiacterised by the facts
B(t)eM, (F (5)), F(iw)=0 F(- 1/5r)=—251 F(r) .The corresponding Diri-

chlet series reads

L(F;8) = 10(1-5%7%) 1 (8) ¢ (5-3)+5 (s)L(8-3,x)~5V5¢(s-3) (s, x)
where . ® I
: Lis,x) = (2" .
1
Define £(r) by £(ie)=0, (g%)3f(1)=<2wi)3Fkr). Then, from Proposition
1.2 follows that : S

5t2(£(=1/57)=A) = =(£(t)-A)
where 1
A= lO(l-g)C(3)C(O)+c(3)L(0,x)‘5/5c(0)L(3,x)
-3 (82(3)=5/5L(3,x)).
Now let . _
-8E(1) = E,(1)=5E,(5t)+20(E,(x,1)=/5F,(x,7))
where : ’

_ 1 © . n, n n
E,(x,1) = g“*il(g)zfia

Fz(x,r) = ¥ (%)mqmn .
m,n=1

The function E(1) satisfies E(-l/Sr)=-512E(r)) hence E(r)(f(r)-A) is
fixed under the involution r4-l/51. Consider E(1r) and E(t)f(t) as
functions of t=t(t) and write

n E(t) = ' d t

E(r)f(1) =.2Tcnt 0%n
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By construction it follows that dn and [1,...,n]3cn are algebraic in-
tegers in Q@(v5). Just as in the proof of Theorem 1 we observe. that the
radius of convergence of E(t) (£(t)-A) equals (A2~¢l+x§)2 and hence for
all >0,
- fios 2y (2=e)n
(5) le, Adn|<(A2+ 1+15) vn>n0(;)

Now consider the functions

24?(‘!) = E4(T)-25E4(5T)+ 24(E4(XIT)+5/5F4(XIT))

the corresponding third primitive f(t) and

-8E(1) = E,(1)=5E,(51)+ 20(E, (x,)+/5F,(x,1)).
Consider them as functions of s=s(t) and write

E(r)E(1) = ZTEnsn + E(r) = Zjﬁnsn
From the construction follows that En,an are the conjugates of cn,dﬁ
respectively. By Lemma 3.2 the smallest nonzero branching value of-
s(t) equals (-x +/T:;7) and hence the radius of convergence of both
zlcnsn and Eodnsn is at least (=i, +/1+A ) . Hence for any 6e¢C and any

>0,

)(2+e)n

(6) le —ed, [ <(x;+/1+x vn>n, (e,0).

Now suppose AcQ(vY5). Let A be its conjugate'and let d be its denomina-
tor. Multiplication of (5) and (6) with §=A yields
2n

30, 3) n>n

(7) lec,~(c d A+c d A)+d d AR|«<( 0

Since cnc € Z/[l,...,n]6 cnanK+EndnA£ ﬂ/d[l,...,n]B, dnanAEk E/d?

and d [l,...,n] <(20. l) 1.(20.3)2n for sufficiently large n, we see

that expression (7) vanishes for sufficiently large n. Hence'c -4 A=0

‘for n large enough, and we have a contradiction. Theorem 4 now follows.
_ Q.E. D.

REMARK. By some tedious calculationbne can verify that the numbers'dh

satisfy the recurrence relation

3

. 3 ) : .
(n+}) dn+l = ((124f55/5)n(n+1)+34+15/5}(2n+1)dn~n an-l

a,=1, dl=34+15/5, d.,=7111+3180V5, d3=2040334+9;2465/5

2
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THEOREM 5. The number ;(2)=n?/6 is irrational.

PROOF. Consider.the function

21

5 F(r) = (2+1)E (xs7)=(2-1)E5(x, 1)

where

E, (x,1) ='”¢+2 (M—JL
3 5
q
and yx (k) is the odd character modulo 5 given by x(2)==1 and X is its
complex conjugate. Then F(r)eM3(rl(5)), and, 1n particular, F(1/51+1)=
=(Sr+1)33(r). Its Dirichlet series is given by

L(r,s) = ——:(s)((2+i)L(s 2,x)=(2=1)L(8-2,%))

where L(s,x)=ZTx(k)k_B. Let f(1) be the Fourier series determined by
f(ie=)=0 and,(é%)zf(t)=(2ni)2F(T).Ina straightforward manner one can

verify that

(5¢+1) (£(t/5141)=L(F,2)) = £()=L(F,2)

where 5 -
L(F,2) = 5yt (2) ((2+1)L(0,x)=(2-1)L(0,X)) = g(2).

Consider also

E(1) = é—}iE (x,r)+-—2——E (x,1)
whefe X
E (x,1) é:i'FZ X(k)_g__
14Xr 10 gt

Then E(t1)eM, (T, (5)) and we obtain ¢
E(gy) (F(zz3p) -8 (2)) = E(x) (£(r)=g(2))..

This implies that‘E(r)(f(r) -z(2)) considefed as function of y(1) does
not branch above y—-7?~+5/5, corresponding to t=0. Hence E(r)(f(r)-;(Z))
as a function of y is a Taylorseries in y with radius of convergence_

2 5/5 Note that by construction E(r) has a y- expansion with inte~
gral coefficients, and the. nth coefficient in the y- expansion of
E(1)f(1) is rational with a denominator that divides [l,...,n] ..Our

standard argument now yields g(2)4@.
Q.E.D.
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REMARK. Notice, that E(t)=14+3t+19t"+147t +... and the numbers 1,3,19,
147,... correspond exactly to Apé&ry's.numbers for ;(2). The function
E(1) 18 also discussed in [Be3,p591].-
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