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Abstract
Usmg Padé approximants to the asymptotic expansion of the error term for the series ¥ l/k2 pI l/k and
p | — 1)**1/k2, we recover Apéry’s sequences which allow one to prove the irrationality of { (2) and of { (3) The same

method applied to the partial sums of In{1 — ) also proves the irrationality of certain values of the logarithm.
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1. Introduction

In June 1978 at the “Journées Arithmétiques de Marseille Luminy”, Apéry [3] astonished his
audience by sketching a proof of the irrationality of {(3). To that end Apéry produced the
recurrence relation

niu, +(n—1)>2u,_, = (34n> = 51n% + 270 — S)u,_,, n=2, (1)

and two independent solutions thereof, namely the sequence (b,) of integers determined by the
initial conditions by =1 and b; = 5; and the sequences (a,) of rationals defined by the initial
conditions ao = 0 and a, = 6.

Setd, =[1,2,...,n], where the brackets denote the lowest common multiple. Then it is not too
difficult to check that the 2d2a, and the b, are integers for all ne N. Since, moreover,
lim, ., ,, a,/b, = {(3), one may then confirm that the convergence is so fast that it entails the
irrationality of {(3). Indeed, it follows that for every infinite sequence of rational numbers p/q there
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is an ¢ > 0 such that
1£B) —p/gl >q~%7% 6=1341782 ....

Specifically, the numbers a, and b, can be expressed as sums:

n 2 2 n 2 2
50T LT o

where

n 1 k ( _ l)m—l
Cik= 2 3t L o5 5 mrm -
¢ mgl m? »21 2m> () "™
Apéry also pointed out that the irrationality of {(2) similarly follows from consideration of the
recurrence relation

2up—(n— D2u,_, =11n*> —1ln+3)u,-y, n=2, (3)

and two of its solutions, namely the sequence (b,) determined by by =1 and b} = 3, and the
sequence (a;) determined by ap =0 and a) = 5. Then the b, and d?a, all are integers and
lim,, . a,/b, = {(2). The convergence is sufficiently fast to entail the irrationality of {(2). In this
case one has

o ies!

(_ l)m—l k (_ 1)n+m—1
Ck=2 2 3 P wETT
L e L e
For details of the argument, see [10] or [17]. See also [4] for a generalization of the recurrence
relations (1) and (3).

A little later, a particularly straightforward and elegant proof of the irrationality of {(2) and {(3)
was given by Beukers [5]. Beukers considers the integral

1 f f PHRPEO)InG) 4 o

1 —xy

where

1 d"

*(p) —

Pr) n! dz"

is the shifted Legendre polynomial on [0, 1], and shows that I = b,{(3) — a, where the a, and b, are

Apéry’s numbers for {(3) mentioned above. Much the same method proves the irrationality of {(2),
namely

f f =2 pwdxdy = b0~ a

("(1 = 2)")

where the a, and b,’. are Apéry’s numbers for {(2).
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In this paper, we find Padé approximations to the asymptotic expansion of the partial sums of
{(2) and of {(3), and show that the numbers a,, a,, b,, and b, arise in a very natural manner.

2. Pade approximants

Setf =¥ ;. ,c;t'. Then the Padé approximant [m/n] to fis defined to be a rational fraction 0./ P,
whose denominator P, has degree n and whose numerator Q, has degree m, so that the expansion of
O/ P, in ascending powers of ¢ coincides with the expansion of f up to the degree m + n; that is,

P f () — Gu(®) = 0™ "), 0. (5)

The theory of Padé approximation is linked with the theory of orthogonal polynomials. Suppose
we define a linear functional ¢ acting on 2, the space of polynomials,

c. Z-R(orC),
x'>{,xY=¢, i=0,1,2,...,
and
ifpeZ cP: 2R (or C),
x> P Xy =Le,x" Py =¢iyp 1=0,1,2, ...
Then the denominators of the Padé approximants [m/n] satisfy the orthogonality property
("D xiIP(x)>=0, i=0,1,2,....,n—1,

where P,(x) = x"P,(x 1),
We now define the associated polynomials:

P — P
Rn—l(t):= <C(m_n+1),%tn(t2>a Rn—leyn—la (6)
where ¢™ "*1 acts on the variable x. Then
Om(t) = ( > c;~t"> P,(t) + " " R4 (0), (7)
i=0

where R,_; () =t" 'R,—,(t ') and ¢; = 0 for j < 0.
If ¢ admits an integral representation with a nondecreasing function « of bounded variation

¢ = L x! da(x), (8)

then the theory of Gaussian quadrature shows that the polynomials P,, orthogonal with respect to
¢, have all their roots in the support of the function a. Moreover

m+n+1 2
ertor: f(0) — [min (0 = "z c()(f_—("x)t) o)
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The above expression for the error is understood as a formal one if ¢ is only a formal linear
functional (see [7, Ch. 3]); but if ¢ admits the integral representation (8) then the error becomes

Qm(t) tm+n+1J‘ xm—n+1 P,%(X) da(X). (10)

f@© —[m/n]; () =f(t) — AT TN =

In the particular case m = n — 1,

o P2(x) |
10— Tn = 1)y = s || 1200 dao. (1

Note that if ¢y, = 0 then
[n/n];(t) = t[n — 1/n] (1)
andifco=0and ¢; =0
[n/n;(t) = t2[n — 2/n] (1),
Remark. If « is a nondecreasing function on R, then

f@® #[m/n];(t) Vit 'eC — supp (a)

3. Irrationality of {(2) and {(3)

The Riemann-zeta function is defined as
® 1
(=% (12)

n=1

where the Dirichlet series on the right-hand side of (12) is convergent for Re(s) > 1 and uniformly
convergent in any finite region where Re(s) = 1 4+ § with § > 0. It defines an analytic function for
Re(s) > 1. The importance of the {-function to number theory is exhibited by the Euler product

() =10-p™)7,
D
where p runs through the primes. Riemann’s formula
(9= —— [ 4. Re9)> 1 (13)
T I(s))o e-—=1 S ’

where

0

r(s)zryrle—ydy (14)
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is the gamma function, and

e—insr(l _ S) Zs—l
15
2in ce19 13)

{(s) =
where C is some path in C, provides the analytic continuation of {(s) over the whole s-plane.

If we write (12) as

n 1 [se] 1
_ ¥y 6
&) =1 kS S (m+ k)Y (16)

and set

1+ kx

¥, (x):= I'(s) i < al )

then

n

1 1
{(s) = k; © T ¥(1/n). (17)

The function

oo x s
k§1 (1 + kx)

is known as the generalized {-function {(s,1 + 1/x) [18, Ch. XIII]. So we get another expression for
¥, (x),

0 e—u/x
Y(x) = 51 du, 18
=] e 13)

whose asymptotic expansion is

s o)

Px)= Y %‘F(kst— 1) xkts-t, (19)
K=o K

here the B, are the Bernoulli numbers.
Outline of our method: In (17), we replace the unknown value ¥(1/n) by some Padé approximant
to ¥, (x), and get the approximation

"1
(% X 5+ g [pladec = V) (20)

We deal only with the particular case p = q.
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3.1 Cases=2

If s = 2 then (17) becomes
"1

(=% 2+ ¥a(l/n) 21)
k=1
and its approximation (20) becomes
o1
(@~ ) 2 T [P/alex =1/n), 22)
k=1
where
¥,(x) = Y Bix**!=Box + B;x* + B,x*> + --- (asymptotic expansion). (23)
k=0

The asymptotic expansion (23) is Borel-summable and its sum is

o —u/x
wgm:ﬁ)u;*lm. (24)

Computation of [p/ q)w,(x)
The Padé approximants [p/ q]y, are linked to the orthogonal polynomial with respect to the

sequence By, B;, B, .... As in Section 2, we define the linear functional B acting on the space of
polynomials by

B: Z2-R,
x'>{(B,x'>=B;,i=0,12,....
The orthogonal polynomials €, satisfy
(B,x'Q,(x)>=0, i=0,1,...,p— L. (25)

These polynomials were studied by Touchard [16, 6, 14, 15] and generalized by Carlitz [8, 9].
Wymann and Moser [20] found the expression

_ 2
2,09= % (2": - 2’)(’:) (26)

for Q,, written by Carlitz as

_ b2 P\ (PHE\(z+k\_ oo (—PPp+Lx+1
2, = (=17 % (-1) (k)< . )( N )—( 1)3F2< i ,1),

where ,F, is the hypergeometric function defined by
a,...,a z (al)k“'(a )kzk
F ? ;z) = — P __.
i q<bla"'3bq kgo(bl)k'“(bq)kk!
here (a),:= a(a + 1)---(a + k — 1), with (a)o = 1, is Pochhammer’s symbol.
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From the identity

T e R ! @

we can give another expression for Q:

_ -pp+1l, —x \ I (p\(ptk\(x
oan (5 0)- £ 00 T))

Note that the Q,’s are orthogonal polynomials and thus satisfy a three-term recurrence relation.
The associated polynomials A, of degree p — 1 are defined as

Ap(t) = <B, M> , (29)

xX—1t

where B acts on x.
From the expression (28) for 2 ,, we get the following formula for A4,(t).

A,(t) = éo (i) (p Z k) <B, (12 :(tk) > (30)

The recurrence relation for the Bernoulli numbers B;, implies that

x (= 1)
C)-sa

Using the expression
( i )
1 (32

R

x—t
on the Newton basis on 0,1, ...,k — 1, we can write a compact formula for 4,:

& (p\[(p+k\[t (=11
Ap(t)_kgl (k)( k ><k>,;1 i2<t) E?p_l- (33)

i

The approximation (22) for {(2) becomes

A,(0) "1 Ayn)
S L 34
(2) kzl k2+t p(t)t 1/n ; k Qp(") ( )
Lemma 3.1.
d

—eN, Vie{l,2,...,n}.
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Proof. We have the partial fraction decomposition
1 i —1)! Z
i(n>_n(n—1)---(n—i+1 Jon—]
i

with 4; = ("3') (—1)""7~ !, Since the A4; are integers and n —je {1,2,...,n}, we deduce that
J J J

[1,2,...,n]i(}) is an integer for all ie {1,...,n}. O

A consequence of the above lemma is
d}A,(neN, VpeN,
and

d7 2,(n){(2) — di (5, Q,(n) + A ,(n))

is a diophantine approximation of {(2), for all integers p, where S, denotes the partial sums:

51
Sn:ZF

k=1

It remains to estimate the error for the Padé approximation:

P2 (0) = [p/ple.(t) = ¥2 (1) — [P — 1/p]w.(®).

Touchard found the integral representation for the linear functional B:

T a+ioco dx
B,x*>=B,= —i~ e | 0.
{B,x"> X IZL—im x SnZ(en) <<

Thus the formula (11) becomes

g _ gm0 dx
t™ () — [p — 1/ple,n(t) = 12ﬁp2(t) L_iw 1 — xt sin® (nx)

and we obtain the error for the Padé approximant to ¥,:

I J““"C Qi(x) dx
2Q2(t7"Y) Jacie 1 — xtsin®(nx)’

¥, — [p/ple,(t) = —

whilst the error for the formula in (35) is

20, (0(2) — d2(S,2,(n) + A () = — dZi " T QZ(X) dx

If p = n, we get Apéry’s numbers:

O —bz n>2<n+k>
w-s-5 (1) (")

2nQ,(n) Jy—iw 1 — x/nsin?(nx)’

(35)

(36)

(37)

(38)

(39)

(40)
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and
L | k k -1 i-1
S,Q,(n) + A,(n) =( Z —5>b’ + Z ( > (n—]: >Z: % =a,. 41)
So the error in formula (39) is

f_l at+ic QZ(X) dx
2n b} Jy—in 1 — x/nsin’(mx)’

d2b,(2) —dPa, = —d2i (42)

In order to prove the irrationality of {(2) we have to show that the right-hand side of (42) tends to
0 as n tends to infinity.
We have

“‘—1/2+iao Q%(x) dx

J+°°Q,f(—%+iu) du 1

2
- 1 + 1/271 Chznu S 1 + 1/2n <BsQn (X)> (43)

—12-ie 1 —x/nsin?nx|

since ch?mu is positive for u € R and Q2 ( — 1 + iu) real positive for u real (22, has all its roots on the
line — % +iR).

The quantity (B, Q2(x)) can be computed from the three-term recurrence relation between the
Q,’s [16], namely

1 n
B,0309) =5 (44
The diophantine approximation (42) satisfies
42632) — d2 gl < dF (@5)

"n+ 172 b,

In [13], Apéry proved that
Sn
b, =0 ((1 +2*/§ ) ) when n — oo, (46)

and from a result concerning d, = [1,2, ...,n], namely that d, ~ e" as n —» oo, we get

lim |d2b,((2) — d?a,| =0, (47)

n— o

where the d?b, and d? a, are integers.
The relation (47) shows that {(2) is not rational and (46) gives a measure of irrationality for {(2):
VpeN, qeN sufficiently large relative to ¢ > 0

1 .
12Q2) - p/q| > with 0 = 11.85, ....
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Remark. From relation (31), (B, (}¥)> = (— 1)*/(k + 1), we can prove by induction that

By(x)ym(x)) = (= D" /(k + m + 1)L,

where y;(x) = (¥)(1/i!), and so another expression of 2, is

1 1 (= 1y
1! 2 n!
Q,,(X)=D,,X (_l)n—l (__l)n (_1)271—2 s
n—Dnl nl 2n — 2)!
Yo (X) ) (%)

D, being a normalization factor. So, with the expression of the Padé approximant to the exponen-

tial function, the formula (28) may be recovered.

3.2. Cases =3

If s = 3 then (17) becomes

o1
(0= %, 5+ ¥allin,

and

q—, o 5 ewu/x d
=

with asymptotic expansion

Yi(x) = % Bi(k + 1)x**2,

k=0

Computation of [ p/ple,(x)
We define the derivative of B by

<——B',xk>:= <B,kxk_1>=kBk._1, k> 1,
(= B,1>=0,

so the functional B’ admits an integral representation

a+iocc

. COsS(\TX
(B’,x"):mzf xk= 3( ) X,
a—iw  SIN°(TX)

—-1<a<.

(48)

(49)

(50)

(51)
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Let (I1,), be the sequence of orthogonal polynomial with respect to the sequence
—B,:=0, —B,=B,, —B)=2B,, —B,=3B,,....

The linear form B’ is not definite and so the polynomials IT, are not of exact degree n. More
precisely, IT,, has degree 2n and I1,,. | = II,,. For the general theory of orthogonal polynomials
with respect to a nondefinite functional, the reader is referred to [11]. If we take o = — 4, the
weight (cosmx/sin3(nx)) dx on the line — % + iR becomes (shnt/ch®nt)dt on R, which is symmetri-
cal around 0. So IT,,(it — %) only contains even powers of t and we can write

I, (it —3) = W,(t%),
with W, of exact degree n. Thus W, satisfies

tshnt
154 2 1% 2 — . 52
JIR "(t ) m(t )Ch3TCt dr 07 n#m ( )

The weight ¢t shnt/ch®nt equals (1/4n3) (|I" 4 + it)|®/| ' (2it)|* ) and has been studied by Wilson [19,
2]. Indeed,

—n,n+ 1,%+it,%—it.1)

Wn(t2)=4F3< 1.1.1 )

and thus for n = 0,

L11 ; (53)

OO0 o

Set @,, the polynomial associated to I1,,, thus

I15,(x) — HZn(t)>

x—1

—nn+1ly+1, —
;,(y) =4F3( y Y. 1)

; B’ acts on x.

@2n(t) = < - Bla

For the computation of @,,, we need to expand the polynomial:

) ()G e

on the Newton basis with abscisse {0,1, — 1,...,n, —n}:

x+k\/x t+k\[t _ 2 Nyw(t) Nioy(x)
{( k )@“( k )<k>}/(x_t)"i; N0 TG+ /2]’ 53)
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where

No(x) = 1, Nl(x)=<’1°>, Nz(x)=(’;)<x“1”>,...,
Nyi(x) = (J:) (x j_ i): N2i+‘1(x) = (i _): 1) (x j_ l>

By induction, the values { — B, N;(x)), with i € N, can be found from

(-1

{=B,Nyu(x)) =0, {—B,Ny+1(x)) e

Now using the linearity of B’, we get the expression for @,

<t+k><t——i)
n k _ 1)it1 3 e

kK )& B K\
i

But Lemma 1 implies that
d?@,,HeN, VieN.

The link between IT,,, ©,, and the Apéry numbers a,, b, is given by taking y =nin(54)and t =n
in (56). Thus

n 2 2
Tarlr) = 5 (Z) (” ) = 57
and
<k§1 j{%) HZn(n) + %@2,,(7’1) = dy. (58)

Of course, since Apéry’s numbers are recovered by the method of Padé approximants, we could
conclude with the end of the proof given in [3] or [10]. However, it seems more coherent to end the
proof of the irrationality of {(3) with the error term for the Padé approximation.

To that end we recall (48),

11 1
3)= —+ = ¥il -
C( ) k;} k3 + 2 3(}7),
in which we replace the unknown term ¥;(1/n) by its Padé approximant [2n/2n]y, (x = 1/n). That
leads to the following approximation for {(3),

Ji1 ., 16u0
O LTI, )
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and to the diophantine approximation,

n

> %>2Hzn(n) + @z,,(n)jld,?, (60)

k=1

2d3 M5, (M) (3) — [(
since IT,,(n) and d2 @,,(n) are integers.

We now estimate the error in (59). The method is the same as for {(2) in (36)(45). Firstly,

@2n(t~ 1)

V3(0) — [2n/2n] 4, (0) = W5 () — £2[2n — 2/2n] e (t) = P53 (0) ~ oY

The integral representation for B’ gives

Yi(t) — [2n/2n]y (1) = dx, (61)

tm?i a*io JT2 (x) cosmx
3,71 Juemiw 1 —xtsin®nx
which implies that

ushmu
ch3nu

n’t 1

du, teR™".
M, D1 +12 wote

|¥3(t) — [2n/2n]y,(1)] <

[, i)
R
From the expression for the integral (see [19]) we get

472

@n+ 1) [3,(n)° (62)

|¥3(1/n) — [2n/2n]y(1/n)| <

The error term in the Padé approximation satisfies

4x?
<
(2n + 1)2112,(n)

2(3)~2 3 15— (/2] (1/n)
k=1

(©3)

so the error term in the diophantine approximation (60) is

n 1 3 8‘1'52 dns
kgl F)”%(”) + @2”(n)}dn < (2n + 1) M, (n)

(64)

243 15,(0){(3) — [2<

Now I1,,(n) = b, (see (57)) implies that

M,(n) = 0((1 + /2)*") (see [10]), | (65)

and so we get, recalling that d, ~ ¢" as n — o0,

243b,(3) — 2d3a,| >0, n—oo. (66)

the point being that the 2d; b, and 2d; a, are integers.
The relation (66) shows that {(3) is irrational, and (65) gives a measure of irrationality of {(3)
which is of course the same one as was found by Apéry.
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4. Irrationality of In(1 + A)

In this section we use the same method as in the previous arguments. Thus we note

Ak © (_ 1)k+n+1

In(1 /1=n — 1)kt — —_—
e

k+n

From the formula

1 o]
— e—(k+n)v dU
k+n 0 ’

we get an integral representation for the remainder term in (67):
@ Ak+" o e—nv
_1k+n+1 =(—=1y n+1 .
L (0T = )L’l o
If we expand the function
1+ 4 i ok
< Rk( - A‘) E_' »

0

e+ 4 4

where the R,( — A)’s are the Eulerian numbers [8], we get the asymptotic expansion

© lk+n (_ 1)n1n+1 ( @® )
-1 k+n+1 = R.(— A k .
T T Ty (B RAE)

We now set

8109 = 3, Ri(— 5"
k=0

(67)

(68)

(69)

(70)

Carlitz has studied the orthogonal polynomials with respect to Ro( — 4), R ( — 4), ...: If we define

the linear function R by
(R, x*y:= Ry(— 1),
then
R, x*P,(x)>=0, k=0,1,...,n—1,

implies that

- NEAYE:
P,,(x)—kgo(l-#/l) (k) (k) [8].

The associated polynomials are

o VAR
0.0 5 a+a(}) (RE=9),
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Carlitz showed that (R,(3)> = (— A — 1)7¥ and thus, using (32),

L NOAYARE A A
o= uv (1) () 2w ()
i
If we set A = p/q, with p and g€ Z and t = n, then ¢"d,Q,(n) € Z.
An integral representation for R, ( — A),

1 + /1 atiom . /l—z
—— z5 —
210 Jy-ie SINTZ

Ry( —'i) =

dz, —1<a<,

is given by Carlitz, and thus

atioo -z
<P1(x)=——uf L A7 4,

2iA

e—io 1 —XxzZsinmz
The orthogonal polynomial P, satisfies

a+ico )._z + 21
2 —
L_iw Pr (@) sinmz dz = i+ 4

(=" [8],

233

(71)

(72)

(73)

(74)

and since Re(A~%/sinnz) > 0 for ze — 4 + iR, we obtain an upper bound for the error in the Padé

approximation to @,

An
x>0, [@1(x)—[n—1/n]e,(x)| < |1+—x/2| .
In particular, if x = 1/n, we get
1 | A"
) — —_ € e
@Q)[nlmuwy”+UM.

In (67) we now replace the remainder term by its Padé approximant

N n +1,1k (—1)"i"+1
In(1 + )~ k; (= 1* T + Tran [n — 1/n]q,(1/n),

and obtain a diophantine approximation for In(1 + p/q):

iZn d" q2n

Ill’l(l + p/q)dnqz"P,,(n) — dnqzn Tn(n)l < m ?

where

n k
T, = Puln) ¥ (= D' D (=17 Qulmg
k=1 q

(75)

(76)

(77)
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From the expression of P,(x) we can conclude that
n . n 2 2
=3 (1+4) = Legendre( n,— + 1 | A",
k=0 k A
where Legendre(n, x) is the nth Legendre polynomial. Thus
T,(n)
P,(n)

So, the classical proof for the irrationality of In(1 + p/q) based on Padé approximations to the
function In(1 + x), is recovered by the formula (77).

= [n/n Nlna+xn (X= 1). (78)

5. Proof of irrationality of {(2) with alternating series

Another expression for {(2) is

22(_1)“. (79)
k=1
Suppose we write it as a sum
)k 1 © (_1)k+n+1
—_. 80
=2 Zl +2k§1 (k + n)? (50)
We define @, by @,(x) = ¥ ,2, Ri( — 1)(k + 1)x*. So
(=1! (— "
@=23 S+ S eam, @81)
k=1

With the same method as in Section 3.1, we can now show that the Padé approximant [2n/2n],,(x)
computed at x = 1/n leads to Apéry’ numbers a, and b, and so yields the irrationality of {(2) with
the integral representation for the sequence (kRy—1( — 1)),

n(l +7) [*7'®°  cosmz
- zk =
214 Jy—iw  sin’mz

obtained from an integration by parts applied to (72).

kRy—1(—1)= —

dz, k=1,

6. Conclusion

The substitution of the asymptotic expansion of the remainder term of a series by its Pade
approximant makes it possible to recover Apéry’s numbers in a natural way, and also yields the
standard proof for the irrationality of some logarithms. Unfortunately, the method does not
generalize because the “weight function” underlying the functions ¥, when s > 4, is no longer
positive on its support. So, Padé approximation is not appropriate to constructing good approxi-
mations to {(s), s > 4. Nonetheless, the free choice of poles in the Padé-type approximation could
lead to some interesting results.
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